4,885 research outputs found

    ASSESSING GAMEPLAY EMOTIONS FROM PHYSIOLOGICAL SIGNALS: A FUZZY DECISION TREES BASED MODEL

    Get PDF
    International audienceAs video games become a widespread form of entertainment, there is need to develop new evaluative methodologies for acknowledging the various aspects of the player's subjective experience, and especially the emotional aspect. Video game developers could benefit from being aware of how the player reacts emotionally to specific game parameters. In this study, we addressed the possibility to record physiological measures on players involved in an action game, with the main objective of developing adequate models to describe emotional states. Our goal was to estimate the emotional state of the player from physiological signals so as to relate these variations of the autonomic nervous system to the specific game narratives. To achieve this, we developed a fuzzy set theory based model to recognize various episodes of the game from the user's physiological signals. We used fuzzy decision trees to generate the rules that map these signals to game episodes characterized by a variation of challenge at stake. A specific advantage to our approach is that we automatically recognize game episodes from physiological signals with explicitly defined rules relating the signals to episodes in a continuous scale. We compare our results with the actual game statistics information associated with the game episode

    Assessing Gameplay Emotions from physiological signals: a fuzzy decision trees based model

    Get PDF
    Paper presented at INTERNATIONAL CONFERENCE ON KANSEI ENGINEERING AND EMOTION RESEARCH 2010, KEER2010, PARIS | MARCH 2-4 2010As video games become a widespread form of entertainment, there is need to develop new evaluative methodologies for acknowledging the various aspects of the player’s subjective experience, and especially the emotional aspect. Video game developers could benefit from being aware of how the player reacts emotionally to specific game parameters. In this study, we addressed the possibility to record physiological measures on players involved in an action game, with the main objective of developing adequate models to describe emotional states. Our goal was to estimate the emotional state of the player from physiological signals so as to relate these variations of the autonomic nervous system to the specific game narratives. To achieve this, we developed a fuzzy set theory based model to recognize various episodes of the game from the user’s physiological signals. We used fuzzy decision trees to generate the rules that map these signals to game episodes characterized by a variation of challenge at stake. A specific advantage to our approach is that we automatically recognize game episodes from physiological signals with explicitly defined rules relating the signals to episodes in a continuous scale. We compare our results with the actual game statistics information associated with the game episodes.As video games become a widespread form of entertainment, there is need to develop new evaluative methodologies for acknowledging the various aspects of the player’s subjective experience, and especially the emotional aspect. Video game developers could benefit from being aware of how the player reacts emotionally to specific game parameters. In this study, we addressed the possibility to record physiological measures on players involved in an action game, with the main objective of developing adequate models to describe emotional states. Our goal was to estimate the emotional state of the player from physiological signals so as to relate these variations of the autonomic nervous system to the specific game narratives. To achieve this, we developed a fuzzy set theory based model to recognize various episodes of the game from the user’s physiological signals. We used fuzzy decision trees to generate the rules that map these signals to game episodes characterized by a variation of challenge at stake. A specific advantage to our approach is that we automatically recognize game episodes from physiological signals with explicitly defined rules relating the signals to episodes in a continuous scale. We compare our results with the actual game statistics information associated with the game episodes

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore