33 research outputs found

    Bipartite Temporal Graphs and the Parameterized Complexity of Multistage 2-Coloring

    Get PDF
    We consider the algorithmic complexity of recognizing bipartite temporal graphs. Rather than defining these graphs solely by their underlying graph or individual layers, we define a bipartite temporal graph as one in which every layer can be 2-colored in a way that results in few changes between any two consecutive layers. This approach follows the framework of multistage problems that has received a growing amount of attention in recent years. We investigate the complexity of recognizing these graphs. We show that this problem is NP-hard even if there are only two layers or if only one change is allowed between consecutive layers. We consider the parameterized complexity of the problem with respect to several structural graph parameters, which we transfer from the static to the temporal setting in three different ways. Finally, we consider a version of the problem in which we only restrict the total number of changes throughout the lifetime of the graph. We show that this variant is fixed-parameter tractable with respect to the number of changes

    The Parameterized Complexity of the Minimum Shared Edges Problem

    Get PDF
    We study the NP-complete Minimum Shared Edges (MSE) problem. Given an undirected graph, a source and a sink vertex, and two integers p and k, the question is whether there are p paths in the graph connecting the source with the sink and sharing at most k edges. Herein, an edge is shared if it appears in at least two paths. We show that MSE is W[1]-hard when parameterized by the treewidth of the input graph and the number k of shared edges combined. We show that MSE is fixed-parameter tractable with respect to p, but does not admit a polynomial-size kernel (unless NP is contained in coNP/poly). In the proof of the fixed-parameter tractability of MSE parameterized by p, we employ the treewidth reduction technique due to Marx, O'Sullivan, and Razgon [ACM TALG 2013].Comment: 35 pages, 16 figure

    Fair Knapsack

    Full text link
    We study the following multiagent variant of the knapsack problem. We are given a set of items, a set of voters, and a value of the budget; each item is endowed with a cost and each voter assigns to each item a certain value. The goal is to select a subset of items with the total cost not exceeding the budget, in a way that is consistent with the voters' preferences. Since the preferences of the voters over the items can vary significantly, we need a way of aggregating these preferences, in order to select the socially best valid knapsack. We study three approaches to aggregating voters' preferences, which are motivated by the literature on multiwinner elections and fair allocation. This way we introduce the concepts of individually best, diverse, and fair knapsack. We study the computational complexity (including parameterized complexity, and complexity under restricted domains) of the aforementioned multiagent variants of knapsack.Comment: Extended abstract will appear in Proc. of 33rd AAAI 201
    corecore