5 research outputs found

    Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria

    No full text
    Antibiotic-resistant bacteria are frequently involved in implant-associated infections (IAIs), making the treatment of these infections even more challenging. Therefore, multifunctional implant surfaces that simultaneously possess antibacterial activity and induce osseointegration are highly desired in order to prevent IAIs. The incorporation of multiple inorganic antibacterial agents onto the implant surface may aid in generating synergistic antibacterial behavior against a wide microbial spectrum while reducing the occurrence of bacterial resistance. In this study, porous titanium implants synthesized by selective laser melting (SLM) were biofunctionalized with plasma electrolytic oxidation (PEO) using electrolytes based on Ca/P species as well as silver and zinc nanoparticles in ratios from 0 to 100% that were tightly embedded into the growing titanium oxide layer. After the surface bio-functionalization process, silver and zinc ions were released from the implant surfaces for at least 28 days resulting in antibacterial leaching activity against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, the biofunctionalized implants generated reactive oxygen species, thereby contributing to antibacterial contact-killing. While implant surfaces containing up to 75% silver and 25% zinc nanoparticles fully eradicated both adherent and planktonic bacteria in vitro as well as in an ex vivo experiment performed using murine femora, solely zinc-bearing surfaces did not. The minimum inhibitory and bactericidal concentrations determined for different combinations of both types of ions confirmed the presence of a strong synergistic antibacterial behavior, which could be exploited to reduce the amount of required silver ions by two orders of magnitude (i.e., 120 folds). At the same time, the zinc bearing surfaces enhanced the metabolic activity of pre-osteoblasts after 3, 7, and 11 days. Altogether, implant biofunctionalization by PEO with silver and zinc nanoparticles is a fruitful strategy for the synthesis of multifunctional surfaces on orthopedic implants and the prevention of IAIs caused by antibiotic-resistant bacteria. Statement of Significance: Implant-associated infections are becoming increasingly challenging to treat due to growing antibiotic resistance against antibiotics. Here, we propose an alternative approach where silver and zinc nanoparticles are simultaneously used for the biofunctionalization of rationally designed additively manufactured porous titanium. This combination of porous design and tailored surface treatment allows us to reduce the amount of required silver nanoparticles by two orders of magnitude, fully eradicate antibiotic-resistant bacteria, and enhance the osteogenic behavior of pre-osteoblasts. We demonstrate that the resulting implants display antibacterial activity in vitro and ex vivo against methicillin-resistant Staphylococcus aureus.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomaterials & Tissue Biomechanic

    Self-defending additively manufactured bone implants bearing silver and copper nanoparticles

    No full text
    Effective preventive measures against implant-associated infection (IAI) are desperately needed. Therefore, the development of self-defending implants with intrinsic antibacterial properties has gained significant momentum. Biomaterials biofunctionalized with silver (Ag) have resulted in effective antibacterial biomaterials, yet regularly induce cytotoxicity. In this study, the use of both Ag and copper (Cu) nanoparticles (NPs) on TiO2 surfaces was investigated to generate antibacterial and osteoconductive biomaterials. Hence, additively manufactured Ti-6Al-4V volume-porous implants were biofunctionalized with plasma electrolytic oxidation (PEO) through the incorporation of varying ratios of Ag and/or Cu NPs in the TiO2 layer covering the implant surface. For all experimental groups, the surface morphology, chemical composition, ion release profile, generation of reactive ion species, antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and ex vivo, as well as the response of pre-osteoblastic MC3T3-E1 cells in metabolic activity and differentiation assays were determined. PEO biofunctionalization resulted in rough and highly porous surfaces that released Ag and Cu ions for 28 days and generated hydroxyl as well as methyl radicals. A strong synergistic bactericidal behavior between Ag and Cu ions was detected, which allowed to decrease the concentration of Ag ions by 10-fold, while maintaining the same level of antibacterial activity. Antibacterial agar diffusion and quantitative assays indicated strong antibacterial activity in vitro for the implants containing Ag and Ag/Cu, while no antibacterial activity was observed for implants bearing only Cu NPs. Moreover, the biofunctionalized implants with ratios of up to 75% Ag and 25% Cu NP totally eradicated all bacteria in an ex vivo model using murine femora. Meanwhile, the biofunctionalized implants did not show any signs of cytotoxicity, while implants bearing only Cu NPs improved the metabolic activity after 7 and 11 days. The biomaterials developed here, therefore, exploit the synergistic behavior of Ag and Cu to simultaneously offer strong antibacterial behavior while fully mitigating the cytotoxicity of Ag against mammalian cells.Biomaterials & Tissue Biomechanic

    Independent root-cause analysis of contributing factors, including dismantling of 2 duodenoscopes, to investigate an outbreak of multidrug-resistant Klebsiella pneumoniae

    No full text
    Background and Aims: Worldwide, an increasing number of duodenoscope-associated outbreaks are reported. The high prevalence rate of contaminated duodenoscopes puts patients undergoing ERCP at risk of exogenous transmission of microorganisms. The contributing factors of the duodenoscope design to contamination are not well understood. This article reports on the investigation after the outbreak of a multidrug-resistant Klebsiella pneumoniae (MRKP) related to 2 Olympus TJF-Q180V duodenoscopes. Methods: We conducted a contact patient screening and microbiologic laboratory database search. Reprocessing procedures were audited, and both duodenoscopes were fully dismantled to evaluate all potential contamination factors. Outcomes were reviewed by an experienced independent expert. Results: In total, 102 patients who had undergone an ERCP procedure from January to August 2015 were invited for screening. Cultures were available of 81 patients, yielding 27 MRKP-infected or -colonized patients. Ten patients developed an MRKP-related active infection. The 2 duodenoscopes had attack rates (the number of infected or colonized cases/number of exposed persons) of 35% (17/49) and 29% (7/24), respectively. Identical MRKP isolates were cultured from channel flushes of both duodenoscopes. The review revealed 4 major abnormalities: miscommunication about reprocessing, undetected damaged parts, inadequate repair of duodenoscope damage, and duodenoscope design abnormalities, including the forceps elevator, elevator lever, and instrumentation port sealing. Conclusions: Outbreaks are associated with a combination of factors, including duodenoscope design issues, repair issues, improper cleaning, and systemic monitoring of contamination. To eliminate future duodenoscope-associated infections, a multipronged approach is required, including clear communication by all parties involved, a reliable servicing market, stringent surveillance measures, and eventually new duodenoscope designs and reprocessing procedures with a larger margin of safety.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Medical Instruments & Bio-Inspired Technolog

    Fighting Antibiotic-Resistant Bacterial Infections by Surface Biofunctionalization of 3D-Printed Porous Titanium Implants with Reduced Graphene Oxide and Silver Nanoparticles

    No full text
    Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces. However, the formation of ‘nano-knife’ structures (particles embedded perpendicularly to the implant surfaces) was also found around the pores of the PEO layers. Enhanced in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus was observed for the rGO+Ag-containing surfaces compared to the PEO surfaces prepared only with AgNPs. This was caused by a significant improvement in the generation of reactive oxygen species, higher levels of Ag+ release, and the presence of rGO ‘nano-knife’ structures. In addition, the implants developed in this study stimulated the metabolic activity and osteogenic differentiation of MC3T3-E1 preosteoblast cells compared to the PEO surfaces without nanoparticles. Therefore, the PEO titanium surfaces incorporating controlled levels of rGO+Ag nanoparticles have high clinical potential as multifunctional surfaces for 3D-printed orthopaedic implants.Biomaterials & Tissue BiomechanicsTeam Yaiza Gonzalez GarciaBT/Biocatalysi

    Functionality-packed additively manufactured porous titanium implants

    No full text
    The holy grail of orthopedic implant design is to ward off both aseptic and septic loosening for long enough that the implant outlives the patient. Questing this holy grail is feasible only if orthopedic biomaterials possess a long list of functionalities that enable them to discharge the onerous task of permanently replacing the native bone tissue. Here, we present a rationally designed and additive manufacturing (AM) topologically ordered porous metallic biomaterial that is made from Ti-6Al-4V using selective laser melting and packs most (if not all) of the required functionalities into a single implant. In addition to presenting a fully interconnected porous structure and form-freedom that enables realization of patient-specific implants, the biomaterials developed here were biofunctionalized using plasma electrolytic oxidation to locally release both osteogenic (i.e. strontium) and antibacterial (i.e. silver ions) agents. The same single-step biofunctionalization process also incorporated hydroxyapatite into the surface of the implants. Our measurements verified the continued release of both types of active agents up to 28 days. Assessment of the antibacterial activity in vitro and in an ex vivo murine model demonstrated extraordinarily high levels of bactericidal effects against a highly virulent and multidrug-resistant Staphylococcus aureus strain (i.e. USA300) with total eradication of both planktonic and adherent bacteria. This strong antibacterial behavior was combined with a significantly enhanced osteogenic behavior, as evidenced by significantly higher levels of alkaline phosphatase (ALP) activity compared with non-biofunctionalized implants. Finally, we discovered synergistic antibacterial behavior between strontium and silver ions, meaning that 4–32 folds lower concentrations of silver ions were required to achieve growth inhibition and total killing of bacteria. The functionality-packed biomaterial presented here demonstrates a unique combination of functionalities that make it an advanced prototype of future orthopedic biomaterials where implants will outlive patients.Biomaterials & Tissue BiomechanicsMechanical, Maritime and Materials Engineerin
    corecore