1,854 research outputs found
Regularization by free additive convolution, square and rectangular cases
The free convolution is the binary operation on the set of probability
measures on the real line which allows to deduce, from the individual spectral
distributions, the spectral distribution of a sum of independent unitarily
invariant square random matrices or of a sum of free operators in a non
commutative probability space. In the same way, the rectangular free
convolution allows to deduce, from the individual singular distributions, the
singular distribution of a sum of independent unitarily invariant rectangular
random matrices. In this paper, we consider the regularization properties of
these free convolutions on the whole real line. More specifically, we try to
find continuous semigroups of probability measures such that
is the Dirac mass at zero and such that for all positive and all
probability measure , the free convolution of with (or, in
the rectangular context, the rectangular free convolution of with
) is absolutely continuous with respect to the Lebesgue measure, with a
positive analytic density on the whole real line. In the square case, we prove
that in semigroups satisfying this property, no measure can have a finite
second moment, and we give a sufficient condition on semigroups to satisfy this
property, with examples. In the rectangular case, we prove that in most cases,
for in a continuous rectangular-convolution-semigroup, the rectangular
convolution of with either has an atom at the origin or doesn't put
any mass in a neighborhood of the origin, thus the expected property does not
hold. However, we give sufficient conditions for analyticity of the density of
the rectangular convolution of with except on a negligible set of
points, as well as existence and continuity of a density everywhere.Comment: 43 pages, to appear in Complex Analysis and Operator Theor
Large deviations of the extreme eigenvalues of random deformations of matrices
Consider a real diagonal deterministic matrix of size with spectral
measure converging to a compactly supported probability measure. We perturb
this matrix by adding a random finite rank matrix, with delocalized
eigenvectors. We show that the joint law of the extreme eigenvalues of the
perturbed model satisfies a large deviation principle in the scale , with a
good rate function given by a variational formula. We tackle both cases when
the extreme eigenvalues of converge to the edges of the support of the
limiting measure and when we allow some eigenvalues of , that we call
outliers, to converge out of the bulk. We can also generalise our results to
the case when is random, with law proportional to for growing fast enough at infinity and any perturbation of finite
rank.Comment: 44 page
Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices
Consider a deterministic self-adjoint matrix X_n with spectral measure
converging to a compactly supported probability measure, the largest and
smallest eigenvalues converging to the edges of the limiting measure. We
perturb this matrix by adding a random finite rank matrix with delocalized
eigenvectors and study the extreme eigenvalues of the deformed model. We give
necessary conditions on the deterministic matrix X_n so that the eigenvalues
converging out of the bulk exhibit Gaussian fluctuations, whereas the
eigenvalues sticking to the edges are very close to the eigenvalues of the
non-perturbed model and fluctuate in the same scale. We generalize these
results to the case when X_n is random and get similar behavior when we deform
some classical models such as Wigner or Wishart matrices with rather general
entries or the so-called matrix models.Comment: 42 pages, Electron. J. Prob., Vol. 16 (2011), Paper no. 60, pages
1621-166
Spectral Phase Transitions in Non-Linear Wigner Spiked Models
We study the asymptotic behavior of the spectrum of a random matrix where a
non-linearity is applied entry-wise to a Wigner matrix perturbed by a rank-one
spike with independent and identically distributed entries. In this setting, we
show that when the signal-to-noise ratio scale as , where is the first non-zero generalized information
coefficient of the function, the non-linear spike model effectively behaves as
an equivalent spiked Wigner matrix, where the former spike before the
non-linearity is now raised to a power . This allows us to study the
phase transition of the leading eigenvalues, generalizing part of the work of
Baik, Ben Arous and Pech\'e to these non-linear models.Comment: 27 page
Atypicity Detection in Data Streams: a Self-Adjusting Approach
International audienceOutlyingness is a subjective concept relying on the isolation level of a (set of) record(s). Clustering-based outlier detection is a field that aims to cluster data and to detect outliers depending on their characteristics (i.e. small, tight and/or dense clusters might be considered as outliers). Existing methods require a parameter standing for the "level of outlyingness", such as the maximum size or a percentage of small clusters, in order to build the set of outliers. Unfortunately, manually setting this parameter in a streaming environment should not be possible, given the fast time response usually needed. In this paper we propose WOD, a method that separates outliers from clusters thanks to a natural and effective principle. The main advantages of WOD are its ability to automatically adjust to any clustering result and to be parameterless
Web Usage Mining : extraction de périodes denses à partir des logs
National audienceLes techniques de Web Usage Mining existantes sont actuellement basées sur un découpage des données arbitraire (e.g. "un log par mois") ou guidé par des résultats supposés (e.g. "quels sont les comportements des clients pour la période des achats de Noël ? "). Ces approches souffrent des deux problèmes suivants. D'une part, elles dépendent de cette organisation arbitraire des données au cours du temps. D'autre part elles ne peuvent pas extraire automatiquement des "pics saisonniers" dans les données stockées. Nous proposons d'exploiter les données pour découvrir de manière automatique des périodes "denses" de comportements. Une période sera considérée comme "dense" si elle contient au moins un motif séquentiel fréquent pour l'ensemble des utilisateurs qui étaient connectés sur le site à cette période
El glosario como herramienta en interpretación consecutiva. Estudio de un caso práctico: la conciliación en Ruanda
En el presente artículo buscamos, basándonos en un encargo real de
interpretación consecutiva y bilateral, para las combinaciones lingüísticas
francés-español y español-francés, poner de manifiesto la importancia del
proceso de documentación previo al ejercicio de la interpretación en el ámbito
de las Relaciones Internacionales. El testimonio de Yolande Mukagasana,
superviviente del genocidio de Ruanda de 1994, es el eje temático de este
trabajo que, a partir de la recopilación y el estudio de textos paralelos, ofrece
como resultado un glosario ad hoc (francés-español y español-francés), una
herramienta de referencia para el intérprete ante cuestiones relacionadas con el
conflicto de Ruanda (1990-1994).G.I. HUM 767 (ayudas a Grupos de Investigación de la Junta de Andalucía) / Editorial Comares (colección interlingua
- …