13 research outputs found
One-loop RG Flow for Adjoint Multiscalar Gauge Theory
We study the one-loop renormalisation of 4d SU(N) Yang-Mills theory with
adjoint representation scalar multiplets. We calculate the coupled one-loop
renormalization group flows for this theory by developing an algebraic
description, which we find to be characterised by a non-associative algebra of
marginal couplings. The 4d one-loop beta function of the gauge coupling
vanishes for the case , which is intriguing for string theory. There
are real fixed flows (fixed points of ) only for ,
rendering one-loop fixed points of the gauge coupling and scalar couplings
incompatible.Comment: 6 pages, 4 figures, contribution to conference proceeding
Classifying large N limits of multiscalar theories by algebra
We develop a new approach to RG flows and show that one-loop flows in
multiscalar theories can be described by commutative but non-associative
algebras. As an example related to -brane field theories and tensor models,
we study the algebra of a theory with adjoint scalars and its large
limits. The algebraic concepts of idempotents and Peirce numbers/Kowalevski
exponents are used to characterise the RG flows. We classify and describe all
large limits of algebras of multiadjoint scalar models: the standard `t
Hooft matrix theory limit, a `multi-matrix' limit, each with one free
parameter, and an intermediate case with extra symmetry and no free parameter
of the algebra, but an emergent free parameter from a line of one-loop fixed
points. The algebra identifies these limits without diagrammatic or
combinatorial analysis.Comment: 23 pages, 5 figures, Added qualitative discussion of: two loops for
couplings with vanishing one-loop beta function, early uses of the algebra,
origin of the non-associativity, and algebra for the simple O(N) mode
Conformal field theory at large N
The conformal bootstrap method is a non-perturbative method that uses the symmetry in a conformal field theory to constrain and solve for the observables in the theory. We consider a conformal field theory with the symmetry group SU(N) and four general scalar fields as the only low dimensional operators. The four-point correlation function of a quartic interaction of four general scalar fields in a conformal field theory can be written as a sum over primary operators. In order to study the four-point correlator a large-N expansion is made, where N comes from the symmetry group SU(N). Using the conformal bootstrap method the anomalous dimension of the primary operators in the four-point correlator is calculated. Using the AdS/CFT correspondence the anomalous dimension of the primary operators is also calculated using Witten diagrams. Konform fÀltteori Àr en kvantfÀltteori med konform symmetri. Konform symmetri Àr en symmetri som bevarar vinklar och lokalt ser ut som en kombination av en rotation och en förÀndring i skala. En metod för att berÀkna de observerbara kvantiteterna i en konform fÀltteori Àr metoden "conformal boostrap". Denna metod gÄr ut pÄ att anvÀnda symmetrin i en konform fÀltteori för att begrÀnsa och berÀkna vÀrdet pÄ de observerbara kvantiteterna i teorin.En av de observerbar kvantiteterna i en fÀltteori Àr en korrelationsfunktion. Korrelationsfunktioner beskriver interaktionerna mellan partiklarna i en fÀltteori. I detta arbete studerar vi en interaktion mellan fyra skalÀrfÀlt genom att studera fyra-punkts korrelationsfunktionen för denna interaktion. Metoden vi anvÀnder Àr "conformal bootstrap" men vi testar ocksÄ om AdS/CFT dualiteten hÄller för vÄra berÀkningar. AdS/CFT dualiteten Àr en ekvivalens av tvÄ olika teorier, en strÀngteori i ett (d+1)-dimensionellt anti-de Sitter (AdS) rum och en konform fÀltteori (CFT) i den d-dimensionella grÀnsen av anti-de Sitter rummet. Enligt denna dualitet kan en observerbar kvantitet berÀknas frÄn bÄda dessa tvÄ teorier och ge samma resultat. Teorin vi studerar har symmetrigrupp SU(N) och vi arbetar i dimension tvÄ. Vi arbetar ocksÄ med att N, matrisrangen i teorin, Àr stort dÄ detta Àr den grÀns dÀr AdS/CFT dualiteten gÀller. Enligt konform fÀltteori sÄ kan en fyra-punkts korrelationsfunktion av fyra skalÀrer beskrivas som en summa över vad som kallas primÀra fÀlt. Genom att anvÀnda "conformal bootstrap" metoden berÀknas den anormala dimensionen, vilket Àr en korrektion av första icke-triviala ordning till dimensionen, av dessa primÀra fÀlt. Samma kvantitet berÀknas ocksÄ frÄn strÀngteorisidan av AdS/CFT dualiteten genom anvÀndandet av sÄ kallade Witten diagram. Resultatet frÄn bÄda sidor av dualiteten visas stÀmma överens.
Identifying optimal large limits for marginal theory in 4d
We apply our previously developed approach to marginal quartic interactions
in multiscalar QFTs, which shows that one-loop RG flows can be described in
terms of a commutative algebra, to various models in 4d. We show how the
algebra can be used to identify optimal scalings of the couplings for taking
large limits. The algebra identifies these limits without diagrammatic or
combinatorial analysis. For several models this approach leads to new limits
yet to be explored at higher loop orders. We consider the bifundamental and
trifundamental models, as well as a matrix-vector model with an adjoint
representation. Among the suggested new limit theories are some which appear to
be less complex than general planar limits but more complex than ordinary
vector models or melonic models.Comment: 33 pages, 7 figure
Identifying optimal large N limits for marginal Ï 4 theory in 4d
Abstract We apply our previously developed approach to marginal quartic interactions in multiscalar QFTs, which shows that one-loop RG flows can be described in terms of a commutative algebra, to various models in 4d. We show how the algebra can be used to identify optimal scalings of the couplings for taking large N limits. The algebra identifies these limits without diagrammatic or combinatorial analysis. For several models this approach leads to new limits yet to be explored at higher loop orders. We consider the bifundamental and trifundamental models, as well as a matrix-vector model with an adjoint representation. Among the suggested new limit theories are some which appear to be less complex than general planar limits but more complex than ordinary vector models or melonic models
Beta functions and multi-scalar gauge theory
In this licentiate thesis, we provide the context and background for our work One-loop algebras and fixed flow trajectories in adjoint multi-scalar gauge theory (published in JHEP) on the renormalization group flow for a multi-scalar SU(N) gauge theory. The background consists of a description of renormalization group flow, with a focus on beta functions andhow to find fixed points, and multi-scalar theories. In the article we perform one-loop betafunction calculations in an adjoint, massless, multi-scalar Yang-Mills theory with a quartic scalar interaction, in four dimensions and at large N. We calculate the coupled renormalization group flows for this theory using an algebraic description we develop. The results show that to one-loop order real fixed points in the parameter space of the scalar coupling and gauge coupling do not occur
Beta functions and multi-scalar gauge theory
In this licentiate thesis, we provide the context and background for our work One-loop algebras and fixed flow trajectories in adjoint multi-scalar gauge theory (published in JHEP) on the renormalization group flow for a multi-scalar SU(N) gauge theory. The background consists of a description of renormalization group flow, with a focus on beta functions andhow to find fixed points, and multi-scalar theories. In the article we perform one-loop betafunction calculations in an adjoint, massless, multi-scalar Yang-Mills theory with a quartic scalar interaction, in four dimensions and at large N. We calculate the coupled renormalization group flows for this theory using an algebraic description we develop. The results show that to one-loop order real fixed points in the parameter space of the scalar coupling and gauge coupling do not occur
An algebraic approach to the large N renormalization group flow of Ï4-theory
This thesis investigates the role of non-associative algebras in the renormalization group flow of multiscalar theories in the large N limit. Renormalization group (RG) flow describes how the parameters of a quantum field theory (QFT) vary with the energy scale, which is useful for identifying theories with special symmetries. The large N limit is an approximation in which QFT calculations simplify, and by not explicitly relying on perturbation theory it can even yield non-perturbative results. The leading order RG flow of multiscalar theories in four dimensions can be described with non-associative algebras, which our research shows is particularly useful in the large N limit. Based on the algebraic description and simple scaling arguments we have developed a method for identifying sets of large N models that are well behaved to at least leading loop order. The novelty of the method lies in it not relying on diagrammatic or combinatorial analysis. For several models we have identified sets of large N limits which include known limits, such as the melonic limit of tensor models, and new limits with intriguing properties, yet to be analyzed to higher loop order. The algebraic approach, if further developed, has the potential of simplifying calculations and deepening our understanding of QFT in the large N limit and in general.
Entanglement and the black hole information paradox
The black hole information paradox arises when quantum mechanical effects are considered in the vicinity of the event horizon of a black hole. In this report we describe the fundamental properties of quantum mechanical systems and black holes that lead to the information paradox, with focus on quantum entanglement. While first presented in 1976, the information paradox is as of yet an unsolved problem. Two of the proposed solutions, black hole complementarity and firewalls, are discussed.Svarta hÄlets informationsparadox uppkommer nÀr man tar hÀnsyn till kvantmekaniska effekter i nÀrheten av hÀndelsehorisonten av ett svart hÄl. I denna rapport beskrivs de grundlÀggande egenskaper hos kvantmekaniska system och svarta hÄl som leder till informationsparadoxen, med fokus pÄ kvantintrassling. Paradoxen, som presenterades 1976 men Àn idag Àr ett olöst problem, förklaras sedan. TvÄ av de förslagna lösningarna till paradoxen, svarta hÄl-komplementaritet och firewalls, diskuteras
Conformal field theory at large N
The conformal bootstrap method is a non-perturbative method that uses the symmetry in a conformal field theory to constrain and solve for the observables in the theory. We consider a conformal field theory with the symmetry group SU(N) and four general scalar fields as the only low dimensional operators. The four-point correlation function of a quartic interaction of four general scalar fields in a conformal field theory can be written as a sum over primary operators. In order to study the four-point correlator a large-N expansion is made, where N comes from the symmetry group SU(N). Using the conformal bootstrap method the anomalous dimension of the primary operators in the four-point correlator is calculated. Using the AdS/CFT correspondence the anomalous dimension of the primary operators is also calculated using Witten diagrams. Konform fÀltteori Àr en kvantfÀltteori med konform symmetri. Konform symmetri Àr en symmetri som bevarar vinklar och lokalt ser ut som en kombination av en rotation och en förÀndring i skala. En metod för att berÀkna de observerbara kvantiteterna i en konform fÀltteori Àr metoden "conformal boostrap". Denna metod gÄr ut pÄ att anvÀnda symmetrin i en konform fÀltteori för att begrÀnsa och berÀkna vÀrdet pÄ de observerbara kvantiteterna i teorin.En av de observerbar kvantiteterna i en fÀltteori Àr en korrelationsfunktion. Korrelationsfunktioner beskriver interaktionerna mellan partiklarna i en fÀltteori. I detta arbete studerar vi en interaktion mellan fyra skalÀrfÀlt genom att studera fyra-punkts korrelationsfunktionen för denna interaktion. Metoden vi anvÀnder Àr "conformal bootstrap" men vi testar ocksÄ om AdS/CFT dualiteten hÄller för vÄra berÀkningar. AdS/CFT dualiteten Àr en ekvivalens av tvÄ olika teorier, en strÀngteori i ett (d+1)-dimensionellt anti-de Sitter (AdS) rum och en konform fÀltteori (CFT) i den d-dimensionella grÀnsen av anti-de Sitter rummet. Enligt denna dualitet kan en observerbar kvantitet berÀknas frÄn bÄda dessa tvÄ teorier och ge samma resultat. Teorin vi studerar har symmetrigrupp SU(N) och vi arbetar i dimension tvÄ. Vi arbetar ocksÄ med att N, matrisrangen i teorin, Àr stort dÄ detta Àr den grÀns dÀr AdS/CFT dualiteten gÀller. Enligt konform fÀltteori sÄ kan en fyra-punkts korrelationsfunktion av fyra skalÀrer beskrivas som en summa över vad som kallas primÀra fÀlt. Genom att anvÀnda "conformal bootstrap" metoden berÀknas den anormala dimensionen, vilket Àr en korrektion av första icke-triviala ordning till dimensionen, av dessa primÀra fÀlt. Samma kvantitet berÀknas ocksÄ frÄn strÀngteorisidan av AdS/CFT dualiteten genom anvÀndandet av sÄ kallade Witten diagram. Resultatet frÄn bÄda sidor av dualiteten visas stÀmma överens.