425 research outputs found
Mandatory public benefit reporting as a basis for charity accountability: findings from England & Wales
Charitable status is inherently linked in many jurisdictions with the requirement that an entity must be established for public benefit. But, until recently the public benefit principle had relatively little impact on the operations of most established charities. However, in England and Wales, reforms linked to the Charities Act 2006 led to a new requirement for public benefit reporting in the trustees’ annual report (TAR) of every registered charity. This new narrative reporting requirement had the potential to affect the understanding of accountability by charities. The paper investigates the impact of that requirement through a study of over 1400 sets of charity reports and account
On the potential of the EChO mission to characterise gas giant atmospheres
Space telescopes such as EChO (Exoplanet Characterisation Observatory) and
JWST (James Webb Space Telescope) will be important for the future study of
extrasolar planet atmospheres. Both of these missions are capable of performing
high sensitivity spectroscopic measurements at moderate resolutions in the
visible and infrared, which will allow the characterisation of atmospheric
properties using primary and secondary transit spectroscopy. We use the NEMESIS
radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to
explore the potential of the proposed EChO mission to solve the retrieval
problem for a range of H2-He planets orbiting different stars. We find that
EChO should be capable of retrieving temperature structure to ~200 K precision
and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot
Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also
providing upper limits on CO and NH3. We provide a table of retrieval
precisions for these quantities in each test case. We expect around 30
Jupiter-sized planets to be observable by EChO; hot Neptunes orbiting M dwarfs
are rarer, but we anticipate observations of at least one similar planet.Comment: 22 pages, 30 figures, 4 tables. Accepted for publication in MNRA
Exoplanet atmospheres with EChO: spectral retrievals using EChOSim
We demonstrate the effectiveness of the Exoplanet Characterisation
Observatory mission concept for constraining the atmospheric properties of hot
and warm gas giants and super Earths. Synthetic primary and secondary transit
spectra for a range of planets are passed through EChOSim (Waldmann & Pascale
2014) to obtain the expected level of noise for different observational
scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval
code and the retrieved atmospheric properties (temperature structure,
composition and cloud properties) compared with the known input values,
following the method of Barstow et al. (2013a). To correctly retrieve the
temperature structure and composition of the atmosphere to within 2 {\sigma},
we find that we require: a single transit or eclipse of a hot Jupiter orbiting
a sun-like (G2) star at 35 pc to constrain the terminator and dayside
atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star;
10 transits/eclipses of a hot Neptune orbiting an M dwarf at 6 pc; and 30
transits or eclipses of a GJ1214b-like planet.Comment: 13 pages, 15 figures, 1 table. Accepted by Experimental Astronomy.
The final publication will shortly be available at Springer via
http://dx.doi.org/10.1007/s10686-014-9397-
Miniature nitro and peroxide vapor sensors using nanoporous thin films
With the increased and continuous threat of terrorist attacks in public areas, new sensors are required to safeguard the public from home-made explosive devices. Current commercial sensors for explosive vapors are high-cost, bulky equipment not amenable to mass production, thus limiting their widespread deployment within society. We are conducting research on polymer-based microsensors that can overcome these limitations. Our devices offer an approach to the realization of low-cost sensors that can readily be placed as a network of electronic sentinels that can be permanently located in areas of public access. The polymers are chemically tailored to have a high affinity for nitro and peroxide vapors and are grown electrochemically on microelectrodes. Novel nanoporous polymer-based sensors are demonstrated with a detection level of 200 ppb of nitro vapors. In addition, a prototype reversible sensor for peroxide vapors is demonstrated to low ppm concentrations
Redox Signaling in Colonial Hydroids: Many Pathways for Peroxide
Studies of mitochondrial redox signaling predict that
the colonial hydroids Eirene viridula and Podocoryna
carnea should respond to manipulations of reactive oxygen
species (ROS). Both species encrust surfaces with feeding
polyps connected by networks of stolons; P. carnea is more
‘sheet-like’ with closely spaced polyps and short stolons,
while E. viridula is more ‘runner-like’ with widely spaced
polyps and long stolons. Treatment with the chemical antioxidant
vitamin C diminishes ROS in mitochondrion-rich
epitheliomuscular cells (EMCs) and produces phenotypic
effects (sheet-like growth) similar to uncouplers of
oxidative phosphorylation. In peripheral stolon tips,
treatment with vitamin C triggers a dramatic increase of
ROS that is followed by tissue death and stolon regression.
The enzymatic anti-oxidant catalase is probably not taken
up by the colony but, rather, converts hydrogen peroxide
in the medium to water and oxygen. Exogenous catalase
does not affect ROS in mitochondrion-rich EMCs, but
does increase the amounts of ROS emitted from
peripheral stolons, resulting in rapid, runner-like growth.
Treatment with exogenous hydrogen peroxide increases
ROS levels in stolon tips and results in somewhat faster
colony growth. Finally, untreated colonies of E. viridula
exhibit higher levels of ROS in stolon tips than untreated
colonies of P. carnea. ROS may participate in a number of
putative signaling pathways: (1) high levels of ROS may
trigger cell and tissue death in peripheral stolon tips; (2)
more moderate levels of ROS in stolon tips may trigger
outward growth, inhibit branching and, possibly, mediate
the redox signaling of mitochondrion-rich EMCs; and (3)
ROS may have an extra-colony function, perhaps in
suppressing the growth of bacteria
Multi-contrast imaging and digital refocusing on a mobile microscope with a domed LED array
We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope--a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities
From spectra to atmospheres: solving the underconstrained retrieval problem for exoplanets
Spectroscopic observations of transiting exoplanets have provided the first indications of their atmospheric structure and composition. Optimal estimation retrievals have been successfully applied to solar system planets to determine the temperature, composition and aerosol properties of their atmospheres, and have recently been applied to exoplanets. We show the effectiveness of the technique when combined with simulated observations from the proposed space telescope EChO, and also discuss the difficulty of constraining a complex system with sparse data and large uncertainties, using the super-Earth GJ 1214b as an exampl
Hydrogen Peroxide Versus Hydrogen Generation at Bipolar Pd/Au Nano-catalysts Grown into an Intrinsically Microporous Polyamine (PIM-EA-TB)
Binding of PdCl42− into the polymer of intrinsic microporosity PIM-EA-TB (on a Nylon mesh substrate) followed by borohydride reduction leads to uncapped Pd(0) nano-catalysts with typically 3.2 ± 0.2 nm diameter embedded within the microporous polymer host structure. Spontaneous reaction of Pd(0) with formic acid and oxygen is shown to result in the competing formation of (i) hydrogen peroxide (at low formic acid concentration in air; with optimum H2O2 yield at 2 mM HCOOH), (ii) water, or (iii) hydrogen (at higher formic acid concentration or under argon). Next, a spontaneous electroless gold deposition process is employed to attach gold (typically 10- to 35-nm diameter) to the nano-palladium in PIM-EA-TB to give an order of magnitude enhanced production of H2O2 with high yields even at higher HCOOH concentration (suppressing hydrogen evolution). Pd and Au work hand-in-hand as bipolar electrocatalysts. A Clark probe method is developed to assess the catalyst efficiency (based on competing oxygen removal and hydrogen production) and a mass spectrometry method is developed to monitor/optimise the rate of production of hydrogen peroxide. Heterogenised Pd/Au@PIM-EA-TB catalysts are effective and allow easy catalyst recovery and reuse for hydrogen peroxide production
- …