76 research outputs found
Compression of Correlation Matrices and an Efficient Method for Forming Matrix Product States of Fermionic Gaussian States
Here we present an efficient and numerically stable procedure for compressing
a correlation matrix into a set of local unitary single-particle gates, which
leads to a very efficient way of forming the matrix product state (MPS)
approximation of a pure fermionic Gaussian state, such as the ground state of a
quadratic Hamiltonian. The procedure involves successively diagonalizing
subblocks of the correlation matrix to isolate local states which are purely
occupied or unoccupied. A small number of nearest neighbor unitary gates
isolates each local state. The MPS of this state is formed by applying the
many-body version of these gates to a product state. We treat the simple case
of compressing the correlation matrix of spinless free fermions with definite
particle number in detail, though the procedure is easily extended to fermions
with spin and more general BCS states (utilizing the formalism of Majorana
modes). We also present a DMRG-like algorithm to obtain the compressed
correlation matrix directly from a hopping Hamiltonian. In addition, we discuss
a slight variation of the procedure which leads to a simple construction of the
multiscale entanglement renormalization ansatz (MERA) of a fermionic Gaussian
state, and present a simple picture of orthogonal wavelet transforms in terms
of the gate structure we present in this paper. As a simple demonstration we
analyze the Su-Schrieffer-Heeger model (free fermions on a 1D lattice with
staggered hopping amplitudes).Comment: 15 pages, 17 figure
Variational adiabatic transport of tensor networks
We discuss a tensor network method for constructing the adiabatic gauge
potential -- the generator of adiabatic transformations -- as a matrix product
operator, which allows us to adiabatically transport matrix product states.
Adiabatic evolution of tensor networks offers a wide range of applications, of
which two are explored in this paper: improving tensor network optimization and
scanning phase diagrams. By efficiently transporting eigenstates to quantum
criticality and performing intermediary density matrix renormalization group
(DMRG) optimizations along the way, we demonstrate that we can compute ground
and low-lying excited states faster and more reliably than a standard DMRG
method at or near quantum criticality. We demonstrate a simple automated step
size adjustment and detection of the critical point based on the norm of the
adiabatic gauge potential. Remarkably, we are able to reliably transport states
through the critical point of the models we study.Comment: 11 pages, 7 figures; added note in discussion section and new
reference
The case for the continued use of the genus name Mimulus for all monkeyflowers
The genus Mimulus is a well-studied group of plant species, which has for decades allowed researchers to address a wide array of fundamental questions in biology (Wu & al. 2008; Twyford & al. 2015). Linnaeus named the type species of Mimulus (ringens L.), while Darwin (1876) used Mimulus (luteus L.) to answer key research questions. The incredible phenotypic diversity of this group has made it the focus of ecological and evolutionary study since the mid-20th century, initiated by the influential work of Clausen, Keck, and Hiesey as well as their students and collaborators (Clausen & Hiesey 1958; Hiesey & al. 1971, Vickery 1952, 1978). Research has continued on this group of diverse taxa throughout the 20th and into the 21st century (Bradshaw & al. 1995; Schemske & Bradshaw 1999; Wu & al. 2008; Twyford & al. 2015; Yuan 2019), and Mimulus guttatus was one of the first non-model plants to be selected for full genome sequencing (Hellsten & al. 2013). Mimulus has played a key role in advancing our general understanding of the evolution of pollinator shifts (Bradshaw & Schemske 2003; Cooley & al. 2011; Byers & al. 2014), adaptation (Lowry & Willis 2010; Kooyers & al. 2015; Peterson & al. 2016; Ferris & Willis 2018; Troth & al. 2018), speciation (Ramsey & al. 2003; Wright & al. 2013; Sobel & Streisfeld 2015; Zuellig & Sweigart 2018), meiotic drive (Fishman & Saunders 2008), polyploidy (Vallejo-Marín 2012; Vallejo-Marín & al. 2015), range limits (Angert 2009; Sexton et al. 2011; Grossenbacher & al. 2014; Sheth & Angert 2014), circadian rhythms (Greenham & al. 2017), genetic recombination (Hellsten & al. 2013), mating systems (Fenster & Ritland 1994; Dudash & Carr 1998; Brandvain & al. 2014) and developmental biology (Moody & al. 1999; Baker & al. 2011, 2012; Yuan 2019). This combination of a rich history of study coupled with sustained modern research activity is unparalleled among angiosperms. Across many interested parties, the name Mimulus therefore takes on tremendous biological significance and is recognizable not only by botanists, but also by zoologists, horticulturalists, naturalists, and members of the biomedical community. Names associated with a taxonomic group of this prominence should have substantial inertia, and disruptive name changes should be avoided. As members of the Mimulus community, we advocate retaining the genus name Mimulus to describe all monkeyflowers. This is despite recent nomenclature changes that have led to a renaming of most monkeyflower species to other genera.Additional co-authors: Jannice Friedman, Dena L Grossenbacher, Liza M Holeski, Christopher T Ivey, Kathleen M Kay, Vanessa A Koelling, Nicholas J Kooyers, Courtney J Murren, Christopher D Muir, Thomas C Nelson, Megan L Peterson, Joshua R Puzey, Michael C Rotter, Jeffrey R Seemann, Jason P Sexton, Seema N Sheth, Matthew A Streisfeld, Andrea L Sweigart, Alex D Twyford, John H Willis, Kevin M Wright, Carrie A Wu, Yao-Wu Yua
Chronic pancreatitis: Pediatric and adult cohorts show similarities in disease progress despite different risk factors
Objectives:
To investigate the natural history of chronic pancreatitis (CP), patients in the North American Pancreatitis Study2 (NAPS2, adults) and INternational Study group of Pediatric Pancreatitis: In search for a cuRE (INSPPIRE, pediatric) were compared.
Methods:
Demographics, risk factors, disease duration, management and outcomes of 224 children and 1,063 adults were compared using appropriate statistical tests for categorical and continuous variables.
Results:
Alcohol was a risk in 53% of adults and 1% of children (p<0.0001); tobacco in 50% of adults and 7% of children (p<0.0001). Obstructive factors were more common in children (29% vs 19% in adults, p=0.001). Genetic risk factors were found more often in children. Exocrine pancreatic insufficiency was similar (children 26% vs adult 33%, p=0.107). Diabetes was more common in adults than children (36% vs 4% respectively, p<0.0001). Median emergency room visits, hospitalizations, and missed days of work/school were similar across the cohorts. As a secondary analysis, NAPS2 subjects with childhood onset (NAPS2-CO) were compared to INSPPIRE subjects. These two cohorts were more similar than the total INSPPIRE and NAPS2 cohorts, including for genetic risk factors. The only risk factor significantly more common in the NAPS2-CO cohort compared with the INSPPIRE cohort was alcohol (9% NAPS2-CO vs 1% INSPPIRE cohorts, p=0.011).
Conclusions:
Despite disparity in age of onset, children and adults with CP exhibit similarity in demographics, CP treatment, and pain. Differences between groups in radiographic findings and diabetes prevalence may be related to differences in risk factors associated with disease and length of time of CP
Quantifying the effect of experimental design choices for in vitro scratch assays
Scratch assays are often used to investigate potential drug treatments for chronic wounds and cancer. Interpreting these experiments with a mathematical model allows us to estimate the cell diffusivity, D, and the cell proliferation rate, λ. However, the influence of the experimental design on the estimates of D and λ is unclear. Here we apply an approximate Bayesian computation (ABC) parameter inference method, which produces a posterior distribution of D and λ, to new sets of synthetic data, generated from an idealised mathematical model, and experimental data for a non-adhesive mesenchymal population of fibroblast cells. The posterior distribution allows us to quantify the amount of information obtained about D and λ. We investigate two types of scratch assay, as well as varying the number and timing of the experimental observations captured. Our results show that a scrape assay, involving one cell front, provides more precise estimates of D and λ, and is more computationally efficient to interpret than a wound assay, with two opposingly directed cell fronts. We find that recording two observations, after making the initial observation, is sufficient to estimate D and λ, and that the final observation time should correspond to the time taken for the cell front to move across the field of view. These results provide guidance for estimating D and λ, while simultaneously minimising the time and cost associated with performing and interpreting the experiment.Stuart T. Johnston, Joshua V. Ross, Benjamin J. Binder, D.L. Sean McElwain, Parvathi Haridas, Matthew J. Simpso
A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans
The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it
Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism
SummaryWe have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6–12.0, p = 2.4 × 10-7). We estimate there are 130–234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1
The Economics of Collective Brands
We consider the consequences of a shared brand name such as geographical names used to identify high quality products, for the incentives of otherwise autonomous firms to invest in quality. We contend that such collective brand labels improve communication between sellers and consumers, when the scale of production is too small for individual firms to establish reputations on a stand alone basis. This has two opposing effects on member firms' incentives to invest in quality. On the one hand, it increases investment incentives by increasing the visibility and transparency of individual member firms, which increases the return from investment in quality. On the other hand, it creates an incentive to free ride on the group's reputation, which can lead to less investment in quality. We identify parmater values under which collective branding delivers higher quality than is achievable by stand alone firms
- …