4,055 research outputs found

    Thermal Decomposition of Some Linear Perfluoroalkanes in an Inconel Tube

    Get PDF
    The products of the pyrolysis reactions of perfluoropropane, perfluoroethane, and carbon tetrafluoride in an Inconel bomb are described. The values for the energy of activation and frequency factor for the first-order pyrolysis reactions are respectively: (1) 80 kcal. per mole and 2x10(exp14) sec.(exp-1) for perfluoropropane; (2) 53 kcal. per mole and 3x10(exp7) sec.(exp-1) for perfluoroethane; and (3) 96 kcal. per mole and 4x10(exp13) sec.(exp-1) for carbon tetrafluoride

    The alkaline zinc electrode as a mixed potential system

    Get PDF
    Cathodic and anodic processes for the alkaline zinc electrode in 0.01 molar zincate electrolyte (9 molar hydroxide) were investigated. Cyclic voltammograms and current-voltage curves were obtained by supplying pulses through a potentiostat to a zinc rotating disk electrode. The data are interpreted by treating the system as one with a mixed potential; the processes are termed The zincate and corrosion reactions. The relative proportions of the two processes vary with the supplied potential. For the cathodic region, the cathodic corrosion process predominates at higher potentials while both processes occur simultaneously at a lower potential (i.e., 50 mV). For the anodic region, the anodic zincate process predominates at higher potentials while the anodic corrosion process is dominant at lower potential (i.e., 50 mV) if H2 is present

    The Price-Wage Stabilization Program

    Get PDF
    macroeconomics, Price-Wage stabilization program, inflation

    Mud crab aquaculture in Australia and Southeast Asia - Proceedings of the ACIAR Crab Aquaculture Scoping Study and Workshop 28–29 April 2003, Joondooburri Conference Centre, Bribie Island

    Get PDF
    Proceedings of the ACIAR Crab Aquaculture Scoping Study and Workshop 28–29 April 2003, Joondooburri Conference Centre, Bribie IslandCrop Production/Industries,

    Oxidation and hot corrosion of hot-pressed Si3N4 at 1000 deg C

    Get PDF
    The oxidation and hot corrosion of a commercial, hot-pressed Si3N4 were investigated at 1000 C under an atmosphere of flowing O2. For the hot corrosion studies, thin films of Na2SO4 were airbrushed on the Si3N4 surface. The hot corrosion attack was monitored by the following techniques: continuous weight measurements, SO2 evolution, film morphology, and chemical analyses. Even though the hot corrosion weight changes after 25 hr were relatively small, the formation of SiO2 from oxidation of Si3N4 was an order of magnitude greater in the presence of molten Na2SO4. The formation of a protective SiO2 phase at the Si3N4 surface is minimized by the fluxing action of the molten Na2SO4 thereby allowing the oxidation of the Si3N4 to proceed more rapidly. A simple process is proposed to account for the hot corrosion process

    Ionic conductivity of lanthanum fluoride

    Get PDF
    Electrical conductivity of lanthanum fluoride single crystal with calcium impuritie

    A hydroponic design for microgravity and gravity installations

    Get PDF
    A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented

    O2 reduction at the IFC orbiter fuel cell O2 electrode

    Get PDF
    O2 reduction Tafel data were obtained for the IFC Orbiter fuel cell O2 electrode (Au-10 percent Pt catalyst) at temperatures between 24 and 81 C. BET measurements gave an electrode surface area of about 2040 sq cm per sq cm of geometric area. The Tafel data could be fitted to three straight line regions. For current densities less than 0.001 A/sq cm, the slope was essentially independent of temperature with a value of about 0.032 V/decade. Above 0.001 A/sq cm, the two regions, designated in the present study as the 0.04 and 0.12 V/decate regions, were temperature dependent. The apparent energies of activation for these two regions were about 9.3 and 6.5 kcal/mol, respectively. Tafel data (1 atmosphere O2) were extrapolated to 120 C for predicting changes in overpotential with increasing temperature. A mechanism is presented for O2 reduction

    A study of Na(x)Pt3O4 as an O2 electrode bifunctional electrocatalyst

    Get PDF
    The present study suggests that polytetrafluoroethylene (PTFE) bonded Na(X)Pt3O4 gas porous diffusion electrodes may be a viable candidate for bifunctional O2 reduction and evolution activity. The electrodes exhibited Tafel slopes of about 0.06 V/decade for both O2 reduction an evolution. For O2 reduction, the 0.06 slope doubled to 0.12 V/decade at larger current densities. Preliminary stability testing at 24 C suggest that the Na(x)Pt3O4 electrodes were relatively stable at reducing and oxidizing potentials typically encountered at the O2 electrodes in a regenerative fuel cell
    corecore