8,353 research outputs found
Recommended from our members
Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions
Recommended from our members
The role of the ventral intraparietal area (VIP/pVIP) in parsing optic flow into visual motion caused by self-motion and visual motion produced by object-motion
Retinal image motion is a composite signal that contains information about two behaviourally significant factors: self-motion and the movement of environmental objects. It is thought that the brain separates the two relevant signals, and although multiple brain regions have been identified that respond selectively to the composite optic flow signal, which brain region(s) perform the parsing process remains unknown. Here, we present original evidence that the putative human ventral intraparietal area (pVIP), a region known to receive optic flow signals as well as independent self-motion signals from other sensory modalities, plays a critical role in the parsing process and acts to isolate object-motion. We localised pVIP using its multisensory response profile, and then tested its relative responses to simulated object-motion and self-motion stimuli; results indicated that responses were much stronger in pVIP to stimuli that specified object-motion. We report two further observations that will be significant for the future direction of research in this area; firstly, activation in pVIP was suppressed by distant stationary objects compared to the absence of objects or closer objects. Secondly, we describe several other brain regions that share with pVIP selectivity for visual object-motion over visual self-motion as well as a multisensory response
Recommended from our members
An fMRI study of parietal cortex involvement in the visual guidance of locomotion
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved
A spatial covariance (123)I-5IA-85380 SPECT study of α4β2 nicotinic receptors in Alzheimer's disease
Alzheimer's disease (AD) is characterized by widespread degeneration of cholinergic neurons, particularly in the basal forebrain. However, the pattern of these deficits and relationship with known brain networks is unknown. In this study, we sought to clarify this and used 123I-5-iodo-3-[2(S)-2-azetidinylmethoxy] pyridine (1235IA-85380) single photon emission computed tomography to investigate spatial covariance of α4β2 nicotinic acetylcholine receptors in AD and healthy controls. Thirteen AD and 16 controls underwent 1235IA-85380 and regional cerebral blood flow (99mTc-exametazime) single photon emission computed tomography scanning. We applied voxel principal component (PC) analysis, generating series of principal component images representing common intercorrelated voxels across subjects. Linear regression generated specific α4β2 and regional cerebral blood flow covariance patterns that differentiated AD from controls. The α4β2 pattern showed relative decreased uptake in numerous brain regions implicating several networks including default mode, salience, and Papez hubs. Thus, as well as basal forebrain and brainstem cholinergic system dysfunction, cholinergic deficits mediated through nicotinic acetylcholine receptors could be evident within key networks in AD. These findings may be important for the pathophysiology of AD and its associated cognitive and behavioral phenotypes
Interceptive timing: prior knowledge matters
Fast interceptive actions, such as catching a ball, rely upon accurate and precise information from vision. Recent models rely on flexible combinations of visual angle and its rate of expansion of which the tau parameter is a specific case. When an object approaches an observer, however, its trajectory may introduce bias into tau-like parameters that render these computations unacceptable as the sole source of information for actions. Here we show that observer knowledge of object size influences their action timing, and known size combined with image expansion simplifies the computations required to make interceptive actions and provides a route for experience to influence interceptive action
Recommended from our members
Weighing brain activity with the balance: a contemporary replication of Angelo Mosso’s historical experiment
Numerical simulations with a first order BSSN formulation of Einstein's field equations
We present a new fully first order strongly hyperbolic representation of the
BSSN formulation of Einstein's equations with optional constraint damping
terms. We describe the characteristic fields of the system, discuss its
hyperbolicity properties, and present two numerical implementations and
simulations: one using finite differences, adaptive mesh refinement and in
particular binary black holes, and another one using the discontinuous Galerkin
method in spherical symmetry. The results of this paper constitute a first step
in an effort to combine the robustness of BSSN evolutions with very high
accuracy numerical techniques, such as spectral collocation multi-domain or
discontinuous Galerkin methods.Comment: To appear in Physical Review
Recommended from our members
Emotional arousal enhances the impact of long-term memory in attention
Research reveals that long-term memory guides attention. However, it remains unclear how it interacts with emotional arousal to guide attention. To address this issue, we asked participants to learn the locations of a target key embedded within scenes (i.e., a training phase). On the next day, participants’ arousal was manipulated by presenting with a previously fear-conditioned tone (CS+) or a neutral tone that had not been paired with electrical stimulation (CS-), followed by the brief presentation of a scene from the training phase. Participants indicated whether the scene included the target key. The target was presented at the same location as in the training phase. Results revealed that CS+, compared with CS-, led to faster target detection, suggesting that arousal induced by CS+ enhanced the effects of long-term memory in guiding attention. These findings support our hypothesis: arousal amplifies the effects of priority in visual search due to long-term memory
- …