5 research outputs found

    Lunar surface operations. Volume 3: Robotic arm for lunar surface vehicle

    Get PDF
    A robotic arm for a lunar surface vehicle that can help in handling cargo and equipment, and remove obstacles from the path of the vehicle is defined as a support to NASA's intention to establish a lunar based colony by the year 2010. Its mission would include, but not limited to the following: exploration, lunar sampling, replace and remove equipment, and setup equipment (e.g. microwave repeater stations). Performance objectives for the robotic arm include a reach of 3 m, accuracy of 1 cm, arm mass of 100 kg, and lifting capability of 50 kg. The end effectors must grip various sizes and shapes of cargo; push, pull, turn, lift, or lower various types of equipment; and clear a path on the lunar surface by shoveling, sweeping aside, or gripping the obstacle present in the desired path. The arm can safely complete a task within a reasonable amount of time; the actual time is dependent upon the task to be performed. The positioning of the arm includes a manual backup system such that the arm can be safely stored in case of failure. Remote viewing and proximity and positioning sensors are incorporated in the design of the arm. The following specific topic are addressed in this report: mission and requirements, system design and integration, mechanical structure, modified wrist, structure-to-end-effector interface, end-effectors, and system controls

    Lunar surface operations. Volume 4: Lunar rover trailer

    Get PDF
    The purpose of the project was to design a lunar rover trailer for exploration missions. The trailer was designed to carry cargo such as lunar geological samples, mining equipment and personnel. It is designed to operate in both day and night lunar environments. It is also designed to operate with a maximum load of 7000 kilograms. The trailer has a ground clearance of 1.0 meters and can travel over obstacles 0.75 meters high at an incline of 45 degrees. It can be transported to the moon fully assembled using any heavy lift vehicle with a storage compartment diameter of 5.0 meters. The trailer has been designed to meet or exceed the performance of any perceivable lunar vehicle

    Lunar surface operations. Volume 1: Lunar surface emergency shelter

    Get PDF
    The lunar surface emergency shelter (LSES) is designed to provide survival-level accommodations for up to four astronauts for a maximum of five days. It would be used by astronauts who were caught out in the open during a large solar event. The habitable section consists of an aluminum pressure shell with an inner diameter of 6 ft. and a length of 12.2 ft. Access is through a 4 in. thick aluminum airlock door mounted at the rear of the shelter. Shielding is provided by a 14.9 in. thick layer of lunar regolith contained within a second, outer aluminum shell. This provides protection against a 200 MeV event, based on a 15 REM maximum dose. The shelter is self-contained with a maximum range of 1000 km. Power is supplied by a primary fuel cell which occupies 70.7 cu ft. of the interior volume. Mobility is achieved by towing the shelter behind existing lunar vehicles. It was assumed that a fully operational, independent lunar base was available to provide communication support and tools for set-up and maintenance. Transportation to the moon would be provided by the proposed heavy lift launch vehicle. Major design considerations for the LSES were safety, reliability, and minimal use of earth materials
    corecore