2,254 research outputs found

    A proteomic atlas of senescence-associated secretomes for aging biomarker development.

    Get PDF
    The senescence-associated secretory phenotype (SASP) has recently emerged as a driver of and promising therapeutic target for multiple age-related conditions, ranging from neurodegeneration to cancer. The complexity of the SASP, typically assessed by a few dozen secreted proteins, has been greatly underestimated, and a small set of factors cannot explain the diverse phenotypes it produces in vivo. Here, we present the "SASP Atlas," a comprehensive proteomic database of soluble proteins and exosomal cargo SASP factors originating from multiple senescence inducers and cell types. Each profile consists of hundreds of largely distinct proteins but also includes a subset of proteins elevated in all SASPs. Our analyses identify several candidate biomarkers of cellular senescence that overlap with aging markers in human plasma, including Growth/differentiation factor 15 (GDF15), stanniocalcin 1 (STC1), and serine protease inhibitors (SERPINs), which significantly correlated with age in plasma from a human cohort, the Baltimore Longitudinal Study of Aging (BLSA). Our findings will facilitate the identification of proteins characteristic of senescence-associated phenotypes and catalog potential senescence biomarkers to assess the burden, originating stimulus, and tissue of origin of senescent cells in vivo

    Elevated Serum Carboxymethyl-Lysine, an Advanced Glycation End Product, Predicts Severe Walking Disability in Older Women: The Women's Health and Aging Study I

    Get PDF
    Advanced glycation end products (AGEs) have been implicated in the pathogenesis of sarcopenia. Our aim was to characterize the relationship between serum carboxymethyl-lysine (CML), a major circulating AGE, and incident severe walking disability (inability to walk or walking speed <0.4<0.4 m/sec) over 30 months of followup in 394 moderately to severely disabled women, 65\ge 65 years, living in the community in Baltimore, Maryland (the Women's Health and Aging Study I). During followup, 154 (26.4%) women developed severe walking disability, and 23 women died. Women in the highest quartile of serum CML had increased risk of developing of severe walking disability in a multivariate Cox proportional hazards model, adjusting for age and other potential confounders. Women with elevated serum CML are at an increased risk of developing severe walking disability. AGEs are a potentially modifiable risk factor. Further work is needed to establish a causal relationship between AGEs and walking disability

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer’s disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Comparison of the Cosmed K4b2 Portable Metabolic System in Measuring Steady-State Walking Energy Expenditure

    Get PDF
    Recent introduction of the Cosmed K4b(2) portable metabolic analyzer allows measurement of oxygen consumption outside of a laboratory setting in more typical clinical or household environments and thus may be used to obtain information on the metabolic costs of specific daily life activities. The purpose of this study was to assess the accuracy of the Cosmed K4b(2) portable metabolic analyzer against a traditional, stationary gas exchange system (the Medgraphics D-Series) during steady-state, submaximal walking exercise.Nineteen men and women (9 women, 10 men) with an average age of 39.8 years (+/-13.8) completed two 400 meter walk tests using the two systems at a constant, self-selected pace on a treadmill. Average oxygen consumption (VO2) and carbon dioxide production (VCO2) from each walk were compared.Intraclass Correlation Coefficient (ICC) and Pearson correlation coefficients between the two systems for weight indexed VO2 (ml/kg/min), total VO2 (ml/min), and VCO2 (ml/min) ranged from 0.93 to 0.97. Comparison of the average values obtained using the Cosmed K4b(2) and Medgraphics systems using paired t-tests indicate no significant difference for VO2 (ml/kg/min) overall (p = 0.25), or when stratified by sex (p = 0.21 women, p = 0.69 men). The mean difference between analyzers was - 0.296 ml/kg/min (+/-0.26). Results were not significantly different for VO(2) (ml/min) or VCO2) (ml/min) within the study population (p = 0.16 and p = 0.08, respectively), or when stratified by sex (VO(2): p = 0.51 women, p = 0.16 men; VCO2: p = .11 women, p = 0.53 men).The Cosmed K4b(2) portable metabolic analyzer provides measures of VO2 and VCO2 during steady-state, submaximal exercise similar to a traditional, stationary gas exchange system
    corecore