43,173 research outputs found

    Exact self-duality in a modified Skyrme model

    Full text link
    We propose a modification of the Skyrme model that supports a self-dual sector possessing exact non-trivial finite energy solutions. The action of such a theory possesses the usual quadratic and quartic terms in field derivatives, but the couplings of the components of the Maurer-Cartan form of the Skyrme model is made by a non-constant symmetric matrix, instead of the usual Killing form of the SU(2) Lie algebra. The introduction of such a matrix make the self-duality equations conformally invariant in three space dimensions, even though it may break the global internal symmetries of the original Skyrme model. For the case where that matrix is proportional to the identity we show that the theory possesses exact self-dual Skyrmions of unity topological charges.Comment: 12 pages, no figure

    Hopf solitons and area preserving diffeomorphisms of the sphere

    Get PDF
    We consider a (3+1)-dimensional local field theory defined on the sphere. The model possesses exact soliton solutions with non trivial Hopf topological charges, and infinite number of local conserved currents. We show that the Poisson bracket algebra of the corresponding charges is isomorphic to that of the area preserving diffeomorphisms of the sphere. We also show that the conserved currents under consideration are the Noether currents associated to the invariance of the Lagrangian under that infinite group of diffeomorphisms. We indicate possible generalizations of the model.Comment: 6 pages, LaTe

    Exact Self-Dual Skyrmions

    Full text link
    We introduce a Skyrme type model with the target space being the 3-sphere S^3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those two terms are allowed to depend upon the space-time coordinates. The model should therefore be interpreted as an effective theory, such that those couplings correspond in fact to low energy expectation values of fields belonging to a more fundamental theory at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading to an energy depending linearly on the topological charge. The self-duality equations are conformally invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions. Those solutions are labelled by two integers and, despite their toroidal character, the energy density is spherically symmetric when those integers are equal and oblate or prolate otherwise.Comment: 14 pages, 3 figures, a reference adde

    On the connections between Skyrme and Yang Mills theories

    Get PDF
    Skyrme theories on S^3 and S^2, are analyzed using the generalized zero curvature in any dimensions. In the first case, new symmetries and integrable sectors, including the B =1 skyrmions, are unraveled. In S^2 the relation to QCD suggested by Faddeev is discussedComment: Talk at the Workshop on integrable theories, solitons and duality. IFT Sao Paulo July 200

    Self-dual Hopfions

    Full text link
    We construct static and time-dependent exact soliton solutions with non-trivial Hopf topological charge for a field theory in 3+1 dimensions with the target space being the two dimensional sphere S**2. The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.Comment: plain latex, no figures, 23 page

    Tau-functions and Dressing Transformations for Zero-Curvature Affine Integrable Equations

    Get PDF
    The solutions of a large class of hierarchies of zero-curvature equations that includes Toda and KdV type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras~⋙\ggg. Their common feature is that they have some special ``vacuum solutions'' corresponding to Lax operators lying in some abelian (up to the central term) subalgebra of~⋙\ggg; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of~⋙\ggg. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the abelian and non abelian affine Toda theories are discussed in detail.Comment: 27 pages, plain Te