1,075 research outputs found

    The small and large lags of the elastic and anelastic tides. The virtual identity of two rheophysical theories

    Full text link
    The aim of this letter is to discuss the virtual identity of two recent tidal theories: the creep tide theory of Ferraz-Mello (Cel. Mech. Dyn. Astron. 116, 109, 2013) and the Maxwell model developed by Correia et al. (Astron. Astrophys. 571, A50, 2014). It includes the discussion of the basic equations of the theories, which, in both cases, include an elastic and an anelastic component, and shows that the basic equations of the two theories are equivalent and differ by only a numerical factor in the anelastic tide. It also includes a discussion of the lags: the lag of the full tide (geodetic), dominated by the elastic component, and the phase of the anelastic tide. In rotating rocky bodies not trapped in a spin-orbit resonance (e.g., the Earth) the geodetic lag is close to zero and the phase of the semi-diurnal argument in the anelastic tide is close to 90 degrees. The results obtained from combining tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data, by Ray et al., are extended to determine the phase of the semi-diurnal argument in the Earth's anelastic tide as sigma_0=89.80 \pm 0.05 degrees.Comment: Accepted for publication in Astronomy and Astrophysic

    On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system

    Full text link
    This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to re-determine the planet masses and to explore techniques able to determine mass and elements of planets discovered around active stars when the relative variation of the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) The approach proposed by Hatzes et al. (2010) using only those nights in which 2 or 3 observations were done; (2) A pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system; the periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2,454,847 - 873 are used because they include many nights with multiple observations; otherwise it is not possible to separate the effects of the rotation fourth harmonic (5.91d = Prot/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). The results of the various approaches are combined to give for the planet masses the values 8.0 \pm 1.2 MEarth for CoRoT-7b and 13.6 \pm 1.4 MEarth for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given.The results obtained with 3 different approaches agree to give masses larger than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 \pm 3.5 g.cm-3 . CoRoT-7b may be rocky with a large iron core.Comment: 12 pages, 11 figure

    Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions

    Get PDF
    In recent years several pairs of extrasolar planets have been discovered in the vicinity of mean-motion commensurabilities. In some cases, such as the Gliese 876 system, the planets seem to be trapped in a stationary solution, the system exhibiting a simultaneous libration of the resonant angle theta_1 = 2 lambda_2 - lambda_1 - varpi_1 and of the relative position of the pericenters. In this paper we analyze the existence and location of these stable solutions, for the 2/1 and 3/1 resonances, as function of the masses and orbital elements of both planets. This is undertaken via an analytical model for the resonant Hamiltonian function. The results are compared with those of numerical simulations of the exact equations. In the 2/1 commensurability, we show the existence of three principal families of stationary solutions: (i) aligned orbits, in which theta_1 and varpi_1 - varpi_2 both librate around zero, (ii) anti-aligned orbits, in which theta_1=0 and the difference in pericenter is 180 degrees, and (iii) asymmetric stationary solutions, where both the resonant angle and varpi_1 - varpi_2 are constants with values different of 0 or 180 degrees. Each family exists in a different domain of values of the mass ratio and eccentricities of both planets. Similar results are also found in the 3/1 resonance. We discuss the application of these results to the extrasolar planetary systems and develop a chart of possible planetary orbits with apsidal corotation. We estimate, also, the maximum planetary masses in order that the stationary solutions are dynamically stable.Comment: 25 pages, 10 figures. Submitted to Ap

    III.9-2 Tidal evolution of CoRoT massive planets and brown dwarfs and of their host stars

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered

    On Tides and Exoplanets

    Full text link
    This paper reviews the basic equations used in the study of the tidal variations of the rotational and orbital elements of a system formed by one star and one close-in planet as given by the creep tide theory and Darwin's constant time lag (CTL) theory. At the end, it reviews and discusses the determinations of the relaxation factors (and time lags) in the case of host stars and hot Jupiters based on actual observations of orbital decay, stellar rotation and age, etc. It also includes a recollection of the basic facts concerning the variations of the rotation of host stars due to the leakage of angular momentum associated with stellar winds.Comment: 4 figures, IAU Symposium No. 36
    • 

    corecore