31,898 research outputs found

    The universal Airy_1 and Airy_2 processes in the Totally Asymmetric Simple Exclusion Process

    Get PDF
    In the totally asymmetric simple exclusion process (TASEP) two processes arise in the large time limit: the Airy_1 and Airy_2 processes. The Airy_2 process is an universal limit process occurring also in other models: in a stochastic growth model on 1+1-dimensions, 2d last passage percolation, equilibrium crystals, and in random matrix diffusion. The Airy_1 and Airy_2 processes are defined and discussed in the context of the TASEP. We also explain a geometric representation of the TASEP from which the connection to growth models and directed last passage percolation is immediate.Comment: 13 pages, 4 figures, proceeding for the conference in honor of Percy Deift's 60th birthda

    Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure

    Get PDF
    In [arXiv:0804.3035] we studied an interacting particle system which can be also interpreted as a stochastic growth model. This model belongs to the anisotropic KPZ class in 2+1 dimensions. In this paper we present the results that are relevant from the perspective of stochastic growth models, in particular: (a) the surface fluctuations are asymptotically Gaussian on a sqrt(ln(t)) scale and (b) the correlation structure of the surface is asymptotically given by the massless field.Comment: 13 pages, 4 figure

    Fluctuations of the competition interface in presence of shocks

    Full text link
    We consider last passage percolation (LPP) models with exponentially distributed random variables, which are linked to the totally asymmetric simple exclusion process (TASEP). The competition interface for LPP was introduced and studied by Ferrari and Pimentel in [Ann. Probab. 33 (2005), 1235-1254] for cases where the corresponding exclusion process had a rarefaction fan. Here we consider situations with a shock and determine the law of the fluctuations of the competition interface around its deterministic law of large number position. We also study the multipoint distribution of the LPP around the shock, extending our one-point result of [Probab. Theory Relat. Fields 61 (2015), 61-109].Comment: 33 pages, 4 figures, LaTe

    Large time asymptotics of growth models on space-like paths I: PushASEP

    Get PDF
    We consider a new interacting particle system on the one-dimensional lattice that interpolates between TASEP and Toom's model: A particle cannot jump to the right if the neighboring site is occupied, and when jumping to the left it simply pushes all the neighbors that block its way. We prove that for flat and step initial conditions, the large time fluctuations of the height function of the associated growth model along any space-like path are described by the Airy_1 and Airy_2 processes. This includes fluctuations of the height profile for a fixed time and fluctuations of a tagged particle's trajectory as special cases.Comment: 48 pages, 4 figures, LaTeX; Final versio

    Tracy-Widom asymptotics for q-TASEP

    Get PDF
    We consider the q-TASEP that is a q-deformation of the totally asymmetric simple exclusion process (TASEP) on Z for q in [0,1) where the jump rates depend on the gap to the next particle. For step initial condition, we prove that the current fluctuation of q-TASEP at time t are of order t^{1/3} and asymptotically distributed as the GUE Tracy-Widom distribution, which confirms the KPZ scaling theory conjecture.Comment: 24 pages, 5 figure