35 research outputs found
Buoyancy Effects on Concurrent Flame Spread Over Thick PMMA
The flammability of combustible materials in a spacecraft is important for fire safety applications because the conditions in spacecraft environments differ from those on earth. Experimental testing in space is difficult and expensive. However, reducing buoyancy by decreasing ambient pressure is a possible approach to simulate on-earth the burning behavior inside spacecraft environments. The objective of this work is to determine that possibility by studying the effect of pressure on concurrent flame spread, and by comparison with microgravity data, observe up to what point low-pressure can be used to replicate flame spread characteristics observed in microgravity. Specifically, this work studies the effect of pressure and microgravity on upward/concurrent flame spread over 10 mm thick polymethyl methacrylate (PMMA) slabs. Experiments in normal gravity were conducted over pressures ranging between 100 and 40 kPa and a forced flow velocity of 200 mm/s. Microgravity experiments were conducted during NASAs Spacecraft Fire Experiment (Saffire II), on board the Cygnus spacecraft at 100 kPa with an air flow velocity of 200 mm/s. Results show that reductions of pressure slow down the flame spread over the PMMA surface approaching that in microgravity. The data is correlated in terms of a non-dimensional mixed convection analysis that describes the convective heat transferred from the flame to the solid, and the primary mechanism controlling the spread of the flame. The extrapolation of the correlation to low pressures predicts well the flame spread rate obtained in microgravity in the Saffire II experiments. Similar results were obtained by the authors with similar experiments with a thin composite cotton/fiberglass fabric (published elsewhere). Both results suggest that reduced pressure can be used to approximately replicate flame behavior of untested gravity conditions for the burning of thick and thin solids. This work could provide guidance for potential ground-based testing for fire safety design in spacecraft and space habitats
On Simulating Concurrent Flame Spread in Reduced Gravity by Reducing Ambient Pressure
The flammability of combustible materials in spacecraft environments is of importance for fire safety applications because the environmental conditions can greatly differ from those on earth, and a fire in a spacecraft could be catastrophic. Moreover, experimental testing in spacecraft environments can be difficult and expensive, so using ground-based tests to inform microgravity tests is vital. Reducing buoyancy effects by decreasing ambient pressure is a possible approach to simulate a spacecraft environment on earth. The objective of this work is to study the effect of pressure on material flammability, and by comparison with microgravity data, determine the extent to which reducing pressure can be used to simulate reduced gravity. Specifically, this work studies the effect of pressure and microgravity on upward/concurrent flame spread rates and flame appearance of a burning thin composite fabric made of 75% cotton and 25% fiberglass (Sibal). Experiments in normal gravity were conducted using pressures ranging between 100 and 30 kPa and a forced flow velocity of 20 cm/s. Microgravity experiments were conducted during NASAs Spacecraft Fire Experiment (Saffire), on board of the Orbital Corporation Cygnus spacecraft at 100 kPa and an air flow velocity of 20 cm/s. Results show that reductions of ambient pressure slow the flame spread over the fabric. As pressure is reduced, flame intensity is also reduced. Comparison with the concurrent flame spread rates in microgravity show that similar flame spread rates are obtained at around 30 kPa. The normal gravity and microgravity data is correlated in terms of a mixed convection non-dimensional parameter that describes the heat transferred from the flame to the solid surface. The correlation provides information about the similitudes of the flame spread process in variable pressure and reduced gravity environments, providing guidance for potential on-earth testing for fire safety design in spacecraft and space habitats
Applying Flammability Limit Probabilities and the Normoxic Upward Limiting Pressure Concept to NASA STD-6001 Test 1
Repeated Test 1 extinction tests near the upward flammability limit are expected to follow a Poisson process trend. This Poisson process trend suggests that rather than define a ULOI and MOC (which requires two limits to be determined), it might be better to define a single upward limit as being where 1/e (where e (approx. equal to 2.7183) is the characteristic time of the normalized Poisson process) of the materials burn, or, rounding, where approximately 1/3 of the samples fail the test (and burn). Recognizing that spacecraft atmospheres will not bound the entire oxygen-pressure parameter space, but actually lie along the normoxic atmosphere control band, we can focus the materials flammability testing along this normoxic band. A Normoxic Upward Limiting Pressure (NULP) is defined that determines the minimum safe total pressure for a material within the constant partial pressure control band. Then, increasing this pressure limit by a factor of safety, we can define the material as being safe to use at the NULP + SF (where SF is on the order of 10 kilopascal, based on existing flammability data). It is recommended that the thickest material to be tested with the current Test 1 igniter should be 3 mm thick (1/8 inches) to avoid the problem of differentiating between an ignition limit and a true flammability limit
Microgravity smoldering combustion on the USML-1 Space Shuttle mission
Preliminary results from an experimental study of the smolder characteristics of a porous combustible material (flexible polyurethane foam) in normal and microgravity are presented. The experiments, limited in fuel sample size and power available for ignition, show that the smolder process was primarily controlled by heat losses from the reaction to the surrounding environment In microgravity, the reduced heat losses due to the absence of natural convection result in only slightly higher temperatures in the quiescent microgravity test than in normal gravity, but a dramatically larger production of combustion products in all microgravity tests. Particularly significant is the proportionately larger amount of carbon monoxide and light organic compounds produced in microgravity, despite comparable temperatures and similar char patterns. This excessive production of fuel-rich combustion products may be a generic characteristic of smoldering polyurethane in microgravity, with an associated increase in the toxic hazard of smolder in spacecraft
Large-scale Spacecraft Fire Safety Tests
An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests. The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation
Unmanned Vehicle Material Flammability Test
Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats
Development of Large-Scale Spacecraft Fire Safety Experiments
The status is presented of a spacecraft fire safety research project that is being developed to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this knowledge gap, the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate has established a project with the goal of substantially advancing our understanding of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. Several computer modeling and ground-based experiment efforts will complement the flight experiment effort. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development. The status of the overall experiment and the associated international technology development efforts are summarized