3,125 research outputs found
Surface term effects on mass estimators
Context. We propose a way of estimating the mass contained in the volume occupied by a sample of galaxies in a virialized system. Aims. We analyze the influence of surface effects and the contribution of the cosmological constant terms on our mass estimations of galaxy systems. Methods. We propose two equations that contain surface terms to estimate galaxy sample masses. When the surface terms are neglected, these equations provide the so-called virial and projected masses. Both equations lead to a single equation that allows sample masses to be estimated without the need for calculating surface terms. Sample masses for some nearest galaxy groups are estimated and compared with virialized masses determined from turn-around radii and results of a spherical infall model. Results. Surface effects have a considerable effect on the mass estimations of the studied galaxy groups. According to our results, they lead sample masses of some groups to being less than half the virial mass estimations and even less than 10% of projected mass estimations. However, the contributions of cosmological constant terms to mass estimations are smaller than 2% for the majority of the virialized groups studied. Our estimations are in agreement with virialized masses calculated from turn-around radii. Virialized masses for complexes were found to be: (8.9 +/- 2.8) x 10(11) M-circle dot for the Milky Way - M31; (12.5 +/- 2.5) x 10(11) M-circle dot for M81 - NGC 2403; (21.5 +/- 7.7) x 10(11) M-circle dot. for Cantaurs A - M83; and (7.9 +/- 2.6) x 10(11) M-circle dot. for IC 324 - Maffei. Conclusions. The nearest galaxy groups located inside a sphere of 5 Mpc have been addressed to explore the performance of our mass estimator. We have seen that surface effects make mass estimations of galaxy groups rather smaller than both virial and projected masses. In mass calculations, cosmological constant terms can be neglected; nevertheless, the collapse of cold dark matter leading to virialized structures is strongly affected by the cosmological constant. We have also seen that, if mass density were proportional to luminosity density on different scales in the Universe, the 5 Mpc sphere would have a mean density close to that of the sphere region containing galaxies and systems of galaxies; thus, the rest of the sphere could contain regions of low-mass dark halos with similar mass density. This mass density would be about 4.5 times greater than that of the matter background of the Universe at present
Modelling focused electron beam induced deposition beyond Langmuir adsorption
The continuum model of focused electron beam induced deposition (FEBID) is generalized to account for multilayer adsorption processes. Two types of adsorption energies, describing both physisorption and spontaneous chemisorption, are included. Steady state solutions under no diffusion are investigated and compared for a wide range of conditions. The different growth regimes observed are fully explained by relative changes in FEBID characteristic frequencies. Additionally, we present a set of FEBID frequency maps where growth rate and surface coverage are plotted as a function of characteristic timescales. From analyzing Langmuir, as well as homogeneous and heterogeneous multilayer maps, we infer that three types of growth regimes are possible for FEBID under no diffusion, resulting into four types of adsorption isotherms. We propose the use of these maps as a powerful tool for the analysis of FEBID processes.This research was funded by an EPSRC Early Career Fellowship EP/M008517/1 and a Winton Fellowship. This work was conducted within the framework of the COST Action CM1301 (CELINA). DSH acknowledges funding from a Girton College Pfeiffer Scholarship
Design and Implementation of a HardwareModule for MIMO Decoding in a 4G Wireless Receiver
Future 4th Generation (4G) wireless multiuser communication systems will have to provide advanced multimedia services to an increasing number of users, making good use of the scarce spectrum resources. Thus, 4G systemdesign should pursue both highertransmission bit rates and higher spectral efficiencies. To achieve this goal,multiple antenna systems are called to play a crucial role. In this contribution we address the implementation in FPGAs of a multiple-input multiple-output (MIMO) decoder embedded in a prototype of a 4G mobile receiver. This MIMO decoder is part of a multicarrier code-division multiple-access (MC-CDMA) radio system, equipped with multiple antennas at both ends of the link, that is able to handle up to 32 users and provides raw transmission bit-rates up to 125 Mbps. The task of the MIMO decoder is to appropriately combine the signals simultaneously received on all antennas to construct an improved signal, free of interference, from which to estimate the transmitted symbols. A comprehensive explanation of the complete design process is provided, including architectural decisions, floating-point to fixedpoint translation, and description of the validation procedure. We also report implementation results using FPGA devices of the Xilinx Virtex-4 family
Direct observation of melting in a 2-D superconducting vortex lattice
Topological defects such as dislocations and disclinations are predicted to
determine the twodimensional (2-D) melting transition. In 2-D superconducting
vortex lattices, macroscopic measurements evidence melting close to the
transition to the normal state. However, the direct observation at the scale of
individual vortices of the melting sequence has never been performed. Here we
provide step by step imaging through scanning tunneling spectroscopy of a 2-D
system of vortices up to the melting transition in a focused-ion-beam
nanodeposited W-based superconducting thin film. We show directly the
transition into an isotropic liquid below the superconducting critical
temperature. Before that, we find a hexatic phase, characterized by the
appearance of free dislocations, and a smectic-like phase, possibly originated
through partial disclination unbinding. These results represent a significant
step in the understanding of melting of 2-D systems, with impact across several
research fields, such as liquid crystal molecules, or lipids in membranes.Comment: Submitted to Nature Physic
Controlling the canted state in antiferromagnetically coupled magnetic bilayers close to the spin reorientation transition
Canted magnetization is obtained in ultrathin, antiferromagnetically coupled magnetic bilayers with thicknesses around the spin reorientation transition. The canting angle is controlled by both the magnetic layer thickness and interlayer coupling strength, which are tuned independently. Hysteresis loops are obtained, where magnetization components parallel and transverse to the applied field are measured, and analyzed by comparison to micromagnetic simulations. This enables the canting angle to be extracted and the behavior of the individual layers to be distinguished. Two types of canted systems are obtained with either single-layer reversal or complex, coupled two-layer reversal, under moderate external magnetic fields. Controlling the magnetization canting and reversal behavior of ultra-thin layers is relevant for the development of magnetoresistive random-access memory and spin-torque oscillator devices
Nano-Hall sensors with granular Co-C
We analyzed the performance of Hall sensors with different Co-C ratios,
deposited directly in nano-structured form, using gas molecules,
by focused electron or ion beam induced deposition. Due to the enhanced
inter-grain scattering in these granular wires, the Extraordinary Hall Effect
can be increased by two orders of magnitude with respect to pure Co, up to a
current sensitivity of . We show that the best magnetic field
resolution at room temperature is obtained for Co ratios between 60% and 70%
and is better than . For an active area of the sensor of , the room temperature magnetic flux resolution is , in the thermal noise frequency range, i.e. above 100
kHz.Comment: 5 pages, 4 figure
Pd-Based Membranes for High Temperature Applications: Current Status
It is an editorialNot availabl
Fluidized Bed Membrane Reactors for Ultra Pure H2 Production - A Step forward towards Commercialization
In this research the performance of a fluidized bed membrane reactor for high temperature
water gas shift and its long term stability was investigated to provide a proof-of-concept of the new
system at lab scale. A demonstration unit with a capacity of 1 Nm3/h of ultra-pure H2 was designed,
built and operated over 900 h of continuous work. Firstly, the performance of the membranes were
investigated at different inlet gas compositions and at different temperatures and H2 partial pressure
differences. The membranes showed very high H2 fluxes (3.89E 6 mol m 2 Pa 1 s 1 at 400 C
and 1 atm pressure difference) with a H2/N2 ideal perm-selectivity (up to 21,000 when integrating
five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the
membranes and the reactor confirmed a very stable performance of the unit for continuous high
temperature water gas shift under bubbling fluidization conditions. Several experiments were carried
out at different temperatures, pressures and various inlet compositions to determine the optimum
operating window for the reactor. The obtained results showed high hydrogen recovery factors,
and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced
hydrogen can be directly fed to a low temperature PEM fuel cell
Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth
We have prepared iron microwires in a combination of focused electron beam
induced deposition (FEBID) and autocatalytic growth from the iron
pentacarbonyl, Fe(CO)5, precursor gas under UHV conditions. The electrical
transport properties of the microwires were investigated and it was found that
the temperature dependence of the longitudinal resistivity (rhoxx) shows a
typical metallic behaviour with a room temperature value of about 88
micro{\Omega} cm. In order to investigate the magnetotransport properties we
have measured the isothermal Hall-resistivities in the range between 4.2 K and
260 K. From these measurements positive values for the ordinary and the
anomalous Hall coefficients were derived. The relation between anomalous Hall
resistivity (rhoAN) and longitudinal resistivity is quadratic, rhoAN rho^2 xx,
revealing an intrinsic origin of the anomalous Hall effect. Finally, at low
temperature in the transversal geometry a negative magnetoresistance of about
0.2 % was measured
Identifying and preventing burnout in young oncologists, an overwhelming challenge in the COVID-19 era: a study of the Spanish Society of Medical Oncology (SEOM)
COVID-19; Esgotament professional; Oncòlegs jovesCOVID-19; Agotamiento profesional; Oncólogos jóvenesCOVID-19; Professional burnout; Young oncologistsBackground
Young oncologists are at particular risk of professional burnout, and this could have a significant impact on their health and care of their patients. The coronavirus disease 2019 (COVID-19) pandemic has forced rapid changes in professionals' jobs and training, with the consequent physical and psychological effects. We aimed to characterize burnout levels and determinants in young oncologists, and the effects of the pandemic on their training and health.
Methods
Two online surveys were conducted among oncology residents and young oncology specialists in Spain. The first addressed professional burnout and its determinants before the COVID-19 pandemic, while the second analyzed the impact of the pandemic on health care organization, training, and physical and psychological health in the same population.
Results
In total, 243 respondents completed the first survey, and 263 the second; 25.1% reported significant levels of professional burnout. Burnout was more common among medical oncology residents (28.2%), mainly in their second year of training. It was significantly associated with a poor work–life balance, inadequate vacation time, and the burnout score. Nearly three-quarters of respondents (72%) were reassigned to COVID-19 care and 84.3% of residents missed part of their training rotations. Overall, 17.2% of this population reported that they had contracted COVID-19, 37.3% had scores indicating anxiety, and 30.4% moderate to severe depression. Almost a quarter of young oncologists (23.3%) had doubts about their medical vocation.
Conclusions
Burnout affects a considerable number of young oncologists. The COVID-19 pandemic has had a profound impact on causes of burnout, making it even more necessary to periodically monitor it to define appropriate detection and prevention strategies.This project received funding from the Spanish Society of Medical Oncology (SEOM)
- …