2 research outputs found

    On the combinatorics of sparsification

    Get PDF
    Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the sparsification of a particular decomposition rule, Λ∗\Lambda^*, that splits an interval for RNA secondary and pseudoknot structures of fixed topological genus. Essential for quantifying the sparsification is the size of its so called candidate set. We present a combinatorial framework which allows by means of probabilities of irreducible substructures to obtain the expected size of the set of Λ∗\Lambda^*-candidates. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) for RNA secondary structures as well as RNA pseudoknot structures. For RNA secondary structures we also consider a simplified loop-energy model. This combinatorial analysis is then compared to the expected number of Λ∗\Lambda^*-candidates obtained from folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop energy model our results imply that sparsification provides a reduction of time complexity by a constant factor of 91% (theory) versus a 96% reduction (experiment). For the "full" loop-energy model there is a reduction of 98% (experiment).Comment: 27 pages, 12 figure

    Sequence-structure relations of pseudoknot RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of sequence-structure relations of RNA is based on a specific notion and folding of RNA structure. The notion of coarse grained structure employed here is that of canonical RNA pseudoknot contact-structures with at most two mutually crossing bonds (3-noncrossing). These structures are folded by a novel, <it>ab initio </it>prediction algorithm, cross, capable of searching all 3-noncrossing RNA structures. The algorithm outputs the minimum free energy structure.</p> <p>Results</p> <p>After giving some background on RNA pseudoknot structures and providing an outline of the folding algorithm being employed, we present in this paper various, statistical results on the mapping from RNA sequences into 3-noncrossing RNA pseudoknot structures. We study properties, like the fraction of pseudoknot structures, the dominant pseudoknot-shapes, neutral walks, neutral neighbors and local connectivity. We then put our results into context of molecular evolution of RNA.</p> <p>Conclusion</p> <p>Our results imply that, in analogy to RNA secondary structures, 3-noncrossing pseudoknot RNA represents a molecular phenotype that is well suited for molecular and in particular neutral evolution. We can conclude that extended, percolating neutral networks of pseudoknot RNA exist.</p
    corecore