8 research outputs found

    Diagnostics of reinforced concrete structures

    No full text
    This diploma thesis deals with the building survey and diagnosis of the station building of a railway station in Vítkovice. It describes process of survey and evaluation of existing reinforced concrete structures and used diagnostic methods. The survey of the object is described in the practical part of the thesis, which involves location of testing spots, taking the samples for testing from the structure, laboratory testing and evaluation of the results – determination of compressive strength of concrete with classification of concrete and elastic modulus. The last part includes static calculation of selected part of the structure

    Exhaustively Identifying Cross-Linked Peptides with a Linear Computational Complexity

    No full text
    Chemical cross-linking coupled to mass spectrometry is a powerful tool to study protein–protein interactions and protein conformations. Two linked peptides are ionized and fragmented to produce a tandem mass spectrum. In such an experiment, a tandem mass spectrum contains ions from two peptides. The peptide identification problem becomes a peptide–peptide pair identification problem. Currently, most tools do not search all possible pairs due to the quadratic time complexity. Consequently, missed findings are unavoidable. In our previous work, we developed a tool named ECL to search all pairs of peptides exhaustively. Unfortunately, it is very slow due to the quadratic computational complexity, especially when the database is large. Furthermore, ECL uses a score function without statistical calibration, while researchers− have proposed that it is inappropriate to directly compare uncalibrated scores because different spectra have different random score distributions. Here we propose an advanced version of ECL, named ECL2. It achieves a linear time and space complexity by taking advantage of the additive property of a score function. It can search a data set containing tens of thousands of spectra against a database containing thousands of proteins in a few hours. Comparison with other five state-of-the-art tools shows that ECL2 is much faster than pLink, StavroX, ProteinProspector, and ECL. Kojak is the only one that is faster than ECL2, but Kojak does not exhaustively search all possible peptide pairs. The comparison shows that ECL2 has the highest sensitivity among the state-of-the-art tools. The experiment using a large-scale in vivo cross-linking data set demonstrates that ECL2 is the only tool that can find the peptide-spectrum matches (PSMs) passing the false discovery rate/<i>q</i>-value threshold. The result illustrates that the exhaustive search and a well-calibrated score function are useful to find PSMs from a huge search space

    Exhaustively Identifying Cross-Linked Peptides with a Linear Computational Complexity

    No full text
    Chemical cross-linking coupled to mass spectrometry is a powerful tool to study protein–protein interactions and protein conformations. Two linked peptides are ionized and fragmented to produce a tandem mass spectrum. In such an experiment, a tandem mass spectrum contains ions from two peptides. The peptide identification problem becomes a peptide–peptide pair identification problem. Currently, most tools do not search all possible pairs due to the quadratic time complexity. Consequently, missed findings are unavoidable. In our previous work, we developed a tool named ECL to search all pairs of peptides exhaustively. Unfortunately, it is very slow due to the quadratic computational complexity, especially when the database is large. Furthermore, ECL uses a score function without statistical calibration, while researchers− have proposed that it is inappropriate to directly compare uncalibrated scores because different spectra have different random score distributions. Here we propose an advanced version of ECL, named ECL2. It achieves a linear time and space complexity by taking advantage of the additive property of a score function. It can search a data set containing tens of thousands of spectra against a database containing thousands of proteins in a few hours. Comparison with other five state-of-the-art tools shows that ECL2 is much faster than pLink, StavroX, ProteinProspector, and ECL. Kojak is the only one that is faster than ECL2, but Kojak does not exhaustively search all possible peptide pairs. The comparison shows that ECL2 has the highest sensitivity among the state-of-the-art tools. The experiment using a large-scale in vivo cross-linking data set demonstrates that ECL2 is the only tool that can find the peptide-spectrum matches (PSMs) passing the false discovery rate/<i>q</i>-value threshold. The result illustrates that the exhaustive search and a well-calibrated score function are useful to find PSMs from a huge search space

    PIPI: PTM-Invariant Peptide Identification Using Coding Method

    No full text
    In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and ProteinProspector. These two tools simplify the task by only considering up to one modified amino acid in each peptide, which results in a higher sensitivity but has difficulty in dealing with multiple modified amino acids. The simulation experiments also show that PIPI has the lowest false discovery proportion, the highest PTM characterization accuracy, and the shortest running time among the unrestricted tools

    PIPI: PTM-Invariant Peptide Identification Using Coding Method

    No full text
    In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and ProteinProspector. These two tools simplify the task by only considering up to one modified amino acid in each peptide, which results in a higher sensitivity but has difficulty in dealing with multiple modified amino acids. The simulation experiments also show that PIPI has the lowest false discovery proportion, the highest PTM characterization accuracy, and the shortest running time among the unrestricted tools

    Implementing the MSFragger Search Engine as a Node in Proteome Discoverer

    No full text
    Here, we describe the implementation of the fast proteomics search engine MSFragger as a processing node in the widely used Proteome Discoverer (PD) software platform. PeptideProphet (via the Philosopher tool kit) is also implemented as an additional PD node to allow validation of MSFragger open (mass-tolerant) search results. These two nodes, along with the existing Percolator validation module, allow users to employ different search strategies and conveniently inspect search results through PD. Our results have demonstrated the improved numbers of PSMs, peptides, and proteins identified by MSFragger coupled with Percolator and significantly faster search speed compared to the conventional SEQUEST/Percolator PD workflows. The MSFragger-PD node is available at https://github.com/nesvilab/PD-Nodes/releases/

    Implementing the MSFragger Search Engine as a Node in Proteome Discoverer

    No full text
    Here, we describe the implementation of the fast proteomics search engine MSFragger as a processing node in the widely used Proteome Discoverer (PD) software platform. PeptideProphet (via the Philosopher tool kit) is also implemented as an additional PD node to allow validation of MSFragger open (mass-tolerant) search results. These two nodes, along with the existing Percolator validation module, allow users to employ different search strategies and conveniently inspect search results through PD. Our results have demonstrated the improved numbers of PSMs, peptides, and proteins identified by MSFragger coupled with Percolator and significantly faster search speed compared to the conventional SEQUEST/Percolator PD workflows. The MSFragger-PD node is available at https://github.com/nesvilab/PD-Nodes/releases/
    corecore