71 research outputs found
Recommended from our members
Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts.
The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes blaCTX-M-14, blaCTX-M-15, and blaCTX-M-27, which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding blaCTX-M genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with blaCTX-M-15, blaCTX-M-14, and blaCTX-M-27 genes identified in three, one, and one isolates, respectively. One sample had no blaCTX-M gene. Two samples had chromosomal blaCTX-M-14 and blaCTX-M-15 genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes
Recommended from our members
Separating Bacteria by Capsule Amount Using a Discontinuous Density Gradient.
Capsule is a key virulence factor in many bacterial species, mediating immune evasion and resistance to various physical stresses. While many methods are available to quantify and compare capsule production between different strains or mutants, there is no widely used method for sorting bacteria based on how much capsule they produce. We have developed a method to separate bacteria by capsule amount, using a discontinuous density gradient. This method is used to compare capsule amounts semi-quantitatively between cultures, to isolate mutants with altered capsule production, and to purify capsulated bacteria from complex samples. This method can also be coupled with transposon-insertion sequencing to identify genes involved in capsule regulation. Here, the method is demonstrated in detail, including how to optimize the gradient conditions for a new bacterial species or strain, and how to construct and run the density gradient
The Capsule Regulatory Network of Klebsiella pneumoniae Defined by density-TraDISort.
Klebsiella pneumoniae infections affect infants and the immunocompromised, and the recent emergence of hypervirulent and multidrug-resistant K. pneumoniae lineages is a critical health care concern. Hypervirulence in K. pneumoniae is mediated by several factors, including the overproduction of extracellular capsule. However, the full details of how K. pneumoniae capsule biosynthesis is achieved or regulated are not known. We have developed a robust and sensitive procedure to identify genes influencing capsule production, density-TraDISort, which combines density gradient centrifugation with transposon insertion sequencing. We have used this method to explore capsule regulation in two clinically relevant Klebsiella strains, K. pneumoniae NTUH-K2044 (capsule type K1) and K. pneumoniae ATCC 43816 (capsule type K2). We identified multiple genes required for full capsule production in K. pneumoniae, as well as putative suppressors of capsule in NTUH-K2044, and have validated the results of our screen with targeted knockout mutants. Further investigation of several of the K. pneumoniae capsule regulators identified-ArgR, MprA/KvrB, SlyA/KvrA, and the Sap ABC transporter-revealed effects on capsule amount and architecture, serum resistance, and virulence. We show that capsule production in K. pneumoniae is at the center of a complex regulatory network involving multiple global regulators and environmental cues and that the majority of capsule regulatory genes are located in the core genome. Overall, our findings expand our understanding of how capsule is regulated in this medically important pathogen and provide a technology that can be easily implemented to study capsule regulation in other bacterial species.IMPORTANCE Capsule production is essential for K. pneumoniae to cause infections, but its regulation and mechanism of synthesis are not fully understood in this organism. We have developed and applied a new method for genome-wide identification of capsule regulators. Using this method, many genes that positively or negatively affect capsule production in K. pneumoniae were identified, and we use these data to propose an integrated model for capsule regulation in this species. Several of the genes and biological processes identified have not previously been linked to capsule synthesis. We also show that the methods presented here can be applied to other species of capsulated bacteria, providing the opportunity to explore and compare capsule regulatory networks in other bacterial strains and species
Developmental transition of Plasmodium sporozoites into liver-stage forms is regulated by the RNA binding protein Pumilio 2
What's in a Name? Species-Wide Whole-Genome Sequencing Resolves Invasive and Noninvasive Lineages of Salmonella enterica Serotype Paratyphi B
For 100 years, it has been obvious that Salmonella enterica strains sharing the serotype with the formula 1,4,[ 5], 12: b:1,2-now known as ParatyphiB-can cause diseases ranging from serious systemic infections to self-limiting gastroenteritis. Despite considerable predicted diversity between strains carrying the common Paratyphi B serotype, there remain few methods that subdivide the group into groups that are congruent with their disease phenotypes. Paratyphi B therefore represents one of the canonical examples in Salmonella where serotyping combined with classical microbiological tests fails to provide clinically informative information. Here, we use genomics to provide the first high-resolution view of this serotype, placing it into a wider genomic context of the Salmonella enterica species. These analyses reveal why it has been impossible to subdivide this serotype based upon phenotypic and limited molecular approaches. By examining the genomic data in detail, we are able to identify common features that correlate with strains of clinical importance. The results presented here provide new diagnostic targets, as well as posing important new questions about the basis for the invasive disease phenotype observed in a subset of strains. IMPORTANCE Salmonella enterica strains carrying the serotype Paratyphi B have long been known to possess Jekyll and Hyde characteristics; some cause gastroenteritis, while others cause serious invasive disease. Understanding what makes up the population of strains carrying this serotype, as well as the source of their invasive disease, is a 100-year-old puzzle that we address here using genomics. Our analysis provides the first high-resolution view of this serotype, placing strains carrying serotype Paratyphi B into the wider genomic context of the Salmonella enterica species. This work reveals a history of disease dating back to the middle ages, caused by a group of distinct lineages with various abilities to cause invasive disease. By quantifying the key genomic differences between the invasive and noninvasive populations, we are able to identify key virulence-related targets that can form the basis of simple, rapid, point-of-care tests.Peer reviewe
The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081
The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending
from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the
genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8;
biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis
reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a
plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has
provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the
high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide
new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes
potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in
the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are
absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients
used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate
respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y.
enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into
the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations
looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution
of other human enteropathogens
Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.
Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E) lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease
Transition of plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein pumilio
Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and, moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2 is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism
Recommended from our members
Superspreaders drive the largest outbreaks of hospital onset COVID-19 infections.
SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs. Further, the data were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-2 transmission, and sheds light on the need for intensive and pervasive infection control procedures
- …