1,899 research outputs found
The search for Higgs particles at LEP
The results of the experimental searches for Higgs particles at LEP, using
the data collected at centre-of-mass energies up to 189 GeV, are reviewed and
the prospects for the near future outlined.Comment: 10 pages, 13 figures. Talk given at the XXXIVnd Rencontres de
Moriond, Electroweak Interactions and Unified Theories, March 13--20 1999, to
be published in the Proceeding
The Trigger System of the CMS Experiment
We give an overview of the main features of the CMS trigger and data
acquisition (DAQ) system. Then, we illustrate the strategies and trigger
configurations (trigger tables) developed for the detector calibration and
physics program of the CMS experiment, at start-up of LHC operations, as well
as their possible evolution with increasing luminosity. Finally, we discuss the
expected CPU time performance of the trigger algorithms and the CPU
requirements for the event filter farm at start-up.Comment: Presented at the 10th International Conference On Instrumentation For
Colliding Beam Physics (INSTR08), 28 Feb - 5 Mar 2008, Novosibirsk, Russi
Searches for Dark Matter Particles at the LHC
The searches for new particles that could be constituents of the dark matter
in the universe are an essential part of the physics program of the experiments
at the Large Hadron Collider. An overview of recent dark matter candidate
searches is presented with a focus on new results obtained by the ATLAS and CMS
experiments from the analysis of the proton-proton collision data at 13 TeV
center-of-mass energy collected in the first part of Run 2.Comment: 10 pages, 7 figures, Proceedings of the 53rd Rencontres de Moriond on
Cosmology, March 17-24 2018, on behalf of the ATLAS and CMS collaboration
The CMS High Level Trigger: Commissioning and First Operation with LHC Beams
The CMS experiment will collect data from the proton-proton collisions
delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to
14 TeV. The CMS trigger system is designed to cope with unprecedented
luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger
architecture only employs two trigger levels. The Level-1 trigger is
implemented using custom electronics. The High Level Trigger is implemented on
a large cluster of commercial processors, the Filter Farm. Trigger menus have
been developed for detector calibration and for fulfilment of the CMS physics
program, at start-up of LHC operations, as well as for operations with higher
luminosities. A complete multipurpose trigger menu developed for an early
instantaneous luminosity of 10^{32}cm{-2}s{-1} has been tested in the HLT
system under realistic online running conditions. The required computing power
needed to process with no dead time a maximum HLT input rate of 50 kHz, as
expected at startup, has been measured, using the most recent commercially
available processors. The Filter Farm has been equipped with 720 such
processors, providing a computing power at least a factor two larger than
expected to be needed at startup. Results for the commissioning of the
full-scale trigger and data acquisition system with cosmic muon runs are
reported. The trigger performance during operations with LHC circulating proton
beams, delivered in September 2008, is outlined and first results are shown.Comment: Published in the Proceedings of the IEEE Nuclear Science
Symposium,October 18-25, 2008,Dresden,German
Test beam results for an upgraded forward tagger of the L3 experiment at LEP II
We have tested new scintillator modules with silicon photodiode readout for the upgraded Active Lead Rings (ALR) of the L3 detector at LEP II. Results are presented from data recorded in muon and electron test beams with particular emphasis on the light production and collection as a function of the particle impact position on the scintillator modules. The results from the beam test data will be used for the design of the readout and trigger electronics in conjunction with the required ALR performance as an electron tagger and beam background monitor at LEP II
Observation of long-range, near-side angular correlations in pPb collisions at the LHC
This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0.-- et al.Results on two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon–nucleon center-of-mass energy of 5.02 TeV are presented. The analysis uses two million collisions collected with the CMS detector at the LHC. The correlations are studied over a broad range of pseudorapidity, η , and full azimuth, ϕ , as a function of charged particle multiplicity and particle transverse momentum, pTpT. In high-multiplicity events, a long-range (2<|Δη|<42<|Δη|<4), near-side (Δϕ≈0Δϕ≈0) structure emerges in the two-particle Δη –Δϕ correlation functions. This is the first observation of such correlations in proton–nucleus collisions, resembling the ridge-like correlations seen in high-multiplicity pp collisions at s=7 TeV and in AA collisions over a broad range of center-of-mass energies. The correlation strength exhibits a pronounced maximum in the range of pT=1–1.5 GeV/cpT=1–1.5 GeV/c and an approximately linear increase with charged particle multiplicity for high-multiplicity events. These observations are qualitatively similar to those in pp collisions when selecting the same observed particle multiplicity, while the overall strength of the correlations is significantly larger in pPb collisions.Acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).Peer Reviewe
Measurement of the Υ(1S), Υ(2S), and Υ(3S) polarizations in pp collisions at √s=7 TeV
The polarizations of the υ(1S), υ(2S), and υ(3S) mesons are measured in proton-proton collisions at √s=7 TeV, using a data sample of υ(nS)→μ+μ- decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb-1. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters λ™, λφ, and λ, as well as the frame-invariant quantity λ, are presented as a function of the υ(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges |y|<0.6 and 0.6<|y|<1.2. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region. © 2013 CERN.We acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, and Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).Peer Reviewe
Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states
This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0.-- et al.Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the μ+μ- final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb-1 of proton-proton collisions at s=7 TeV, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. The results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25-3.55 GeV/c2. © 2013 CERN.Peer Reviewe
Search for long-lived particles in events with photons and missing energy in proton-proton collisions at √s=7 TeV
This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0.-- et al.Results are presented from a search for long-lived neutralinos decaying into a photon and an invisible particle, a signature associated with gauge-mediated supersymmetry breaking in supersymmetric models. The analysis is based on a 4.9 fb−1 sample of proton–proton collisions at √s = 7 TeV, collected with the CMS detector at the LHC. The missing transverse energy and the time of arrival of the photon at the electromagnetic calorimeter are used to search for an excess of events over the expected background. No significant excess is observed, and lower limits at the 95% confidence level are obtained on the mass of the lightest neutralino, m > 220 GeV (for cτ 6000 mm (for m < 150 GeV).We acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).Peer Reviewe
Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV
This article is published Open Access at sciencedirect.com.It is distributed under the terms of the Creative Commons Attribution License 3.0.-- et al.A search has been made for massive resonances decaying into a quark and a vector boson, qW or qZ, or a pair of vector bosons, WW, WZ, or ZZ, where each vector boson decays to hadronic final states. This search is based on a data sample corresponding to an integrated luminosity of 5.0 fb−15.0 fb−1 of proton–proton collisions collected in the CMS experiment at the LHC in 2011 at a center-of-mass energy of 7 TeV. For sufficiently heavy resonances the decay products of each vector boson are merged into a single jet, and the event effectively has a dijet topology. The background from QCD dijet events is reduced using recently developed techniques that resolve jet substructure. A 95% CL lower limit is set on the mass of excited quark resonances decaying into qW (qZ) at 2.38 TeV (2.15 TeV) and upper limits are set on the cross section for resonances decaying to qW, qZ, WW, WZ, or ZZ final states.We acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).Peer Reviewe
- …