106,041 research outputs found
Recurrent Attention Models for Depth-Based Person Identification
We present an attention-based model that reasons on human body shape and
motion dynamics to identify individuals in the absence of RGB information,
hence in the dark. Our approach leverages unique 4D spatio-temporal signatures
to address the identification problem across days. Formulated as a
reinforcement learning task, our model is based on a combination of
convolutional and recurrent neural networks with the goal of identifying small,
discriminative regions indicative of human identity. We demonstrate that our
model produces state-of-the-art results on several published datasets given
only depth images. We further study the robustness of our model towards
viewpoint, appearance, and volumetric changes. Finally, we share insights
gleaned from interpretable 2D, 3D, and 4D visualizations of our model's
spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201
Task-set switching with natural scenes: Measuring the cost of deploying top-down attention
In many everyday situations, we bias our perception from the top down, based on a task or an agenda. Frequently, this entails shifting attention to a specific attribute of a particular object or scene. To explore the cost of shifting top-down attention to a different stimulus attribute, we adopt the task-set switching paradigm, in which switch trials are contrasted with repeat trials in mixed-task blocks and with single-task blocks. Using two tasks that relate to the content of a natural scene in a gray-level photograph and two tasks that relate to the color of the frame around the image, we were able to distinguish switch costs with and without shifts of attention. We found a significant cost in reaction time of 23–31 ms for switches that require shifting attention to other stimulus attributes, but no significant switch cost for switching the task set within an attribute. We conclude that deploying top-down attention to a different attribute incurs a significant cost in reaction time, but that biasing to a different feature value within the same stimulus attribute is effortless
One-shot learning of object categories
Learning visual models of object categories notoriously requires hundreds or thousands of training examples. We show that it is possible to learn much information about a category from just one, or a handful, of images. The key insight is that, rather than learning from scratch, one can take advantage of knowledge coming from previously learned categories, no matter how different these categories might be. We explore a Bayesian implementation of this idea. Object categories are represented by probabilistic models. Prior knowledge is represented as a probability density function on the parameters of these models. The posterior model for an object category is obtained by updating the prior in the light of one or more observations. We test a simple implementation of our algorithm on a database of 101 diverse object categories. We compare category models learned by an implementation of our Bayesian approach to models learned from by maximum likelihood (ML) and maximum a posteriori (MAP) methods. We find that on a database of more than 100 categories, the Bayesian approach produces informative models when the number of training examples is too small for other methods to operate successfully
Deep Fragment Embeddings for Bidirectional Image Sentence Mapping
We introduce a model for bidirectional retrieval of images and sentences
through a multi-modal embedding of visual and natural language data. Unlike
previous models that directly map images or sentences into a common embedding
space, our model works on a finer level and embeds fragments of images
(objects) and fragments of sentences (typed dependency tree relations) into a
common space. In addition to a ranking objective seen in previous work, this
allows us to add a new fragment alignment objective that learns to directly
associate these fragments across modalities. Extensive experimental evaluation
shows that reasoning on both the global level of images and sentences and the
finer level of their respective fragments significantly improves performance on
image-sentence retrieval tasks. Additionally, our model provides interpretable
predictions since the inferred inter-modal fragment alignment is explicit
Love Thy Neighbors: Image Annotation by Exploiting Image Metadata
Some images that are difficult to recognize on their own may become more
clear in the context of a neighborhood of related images with similar
social-network metadata. We build on this intuition to improve multilabel image
annotation. Our model uses image metadata nonparametrically to generate
neighborhoods of related images using Jaccard similarities, then uses a deep
neural network to blend visual information from the image and its neighbors.
Prior work typically models image metadata parametrically, in contrast, our
nonparametric treatment allows our model to perform well even when the
vocabulary of metadata changes between training and testing. We perform
comprehensive experiments on the NUS-WIDE dataset, where we show that our model
outperforms state-of-the-art methods for multilabel image annotation even when
our model is forced to generalize to new types of metadata.Comment: Accepted to ICCV 201
- …