139 research outputs found
Segmentation comparisons on PASCAL context.
Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.</div
Visualization results of our GDAAR method on Cityscapes validation set.
Visualization results of our GDAAR method on Cityscapes validation set.</p
Visualization results of global spatial relation on Cityscapes validation set.
Visualization results of global spatial relation on Cityscapes validation set.</p
The proposed global domain adaptation attention with data-dependent regulator framework for scene segmentation.
To ensure stability in the system, it is common practice to fix certain components in the architecture, such as the beginning STEM (preprocessing) and the final upsample block. Top: The global domain adaptation attention space with feature maps of L layers. The dotted lines among red circles or blue circles mean same feature transformations from N feature nodes. Red circles and blue circles denote feature transformations, and yellow quadrangles denote the regulator of the corresponding feature node on feature maps. Bottom: Given the input from the former layer, we first generate global domain adaptation attention through obtaining global scope relations. To further improve the performance of our approach, we design a data-dependent regulator that adjusts the attention weight on the feature map during inference. By incorporating this additional mechanism, our model is able to better adapt to diverse input domains and enhance segmentation accuracy for challenging images.</p
For different distributions of scenes, the proposed GDAAR adaptively employs different weights on the feature map.
For instance, the feature map of input with complex scene distribution (a) may need more attention to obtain low-level details, and simple scene distribution (b) may same attention to get different-level features. Red circle and blue circle in diagrams denote the higher weight and the lower weight respectively, and black quadrangles denote the attention regulator of the corresponding feature node in feature maps.</p
Visualization results of global channel relation on Cityscapes validation set.
Visualization results of global channel relation on Cityscapes validation set.</p
S1 Data -
Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.</div
Segmentation comparisons on cityscapes dataset.
Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.</div
Segmentation comparisons on COCO stuff dataset.
Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.</div
Performance on both STEM block and regulator.
Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.</div
- …