127 research outputs found
Asian corn borer (Ostrinia furnacalis Gn., Lepidoptera: Crambidae): Attraction to a bisexual lure and comparison of performance with synthetic sex pheromone
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
JUNO Sensitivity to Invisible Decay Modes of Neutrons
We explore the bound neutrons decay into invisible particles (e.g.,
or ) in the JUNO liquid scintillator
detector. The invisible decay includes two decay modes: and . The invisible decays of -shell neutrons in
will leave a highly excited residual nucleus. Subsequently, some
de-excitation modes of the excited residual nuclei can produce a time- and
space-correlated triple coincidence signal in the JUNO detector. Based on a
full Monte Carlo simulation informed with the latest available data, we
estimate all backgrounds, including inverse beta decay events of the reactor
antineutrino , natural radioactivity, cosmogenic isotopes and
neutral current interactions of atmospheric neutrinos. Pulse shape
discrimination and multivariate analysis techniques are employed to further
suppress backgrounds. With two years of exposure, JUNO is expected to give an
order of magnitude improvement compared to the current best limits. After 10
years of data taking, the JUNO expected sensitivities at a 90% confidence level
are and
.Comment: 28 pages, 7 figures, 4 table
Parallelization of Runge–Kutta Methods for Hardware Implementation
Parallel numerical integration is a valuable tool used in many applications requiring high-performance numerical solvers, which is of great interest nowadays due to the increasing difficulty and complexity in differential problems. One of the possible approaches to increase the efficiency of ODE solvers is to parallelize recurrent numerical methods, making them more suitable for execution in hardware with natural parallelism, e.g., field-programmable gate arrays (FPGAs) or graphical processing units (GPUs). Some of the simplest and most popular ODE solvers are explicit Runge–Kutta methods. Despite the high implementability and overall simplicity of the Runge–Kutta schemes, recurrent algorithms remain weakly suitable for execution in parallel computers. In this paper, we propose an approach for parallelizing classical explicit Runge–Kutta methods to construct efficient ODE solvers with pipeline architecture. A novel technique to obtain parallel finite-difference models based on Runge–Kutta integration is described. Three test initial value problems are considered to evaluate the properties of the obtained solvers. It is shown that the truncation error of the parallelized Runge–Kutta method does not significantly change after its known recurrent version. A possible speed up in calculations is estimated using Amdahl’s law and is approximately 2.5–3-times. Block diagrams of fixed-point parallel ODE solvers suitable for hardware implementation on FPGA are given
Information system for data analysis of electronic operational documentation to support the development of economic processes
The article presents an information system for data analysis of electronic operational documentation, the main purpose of which is the storage, collection and analysis of information, as well as the formation of an expert decision and forecasting to improve the quality of user work and the speed of processing large amounts of information. The functional structure of maintaining operational documentation was considered, a description of data flows and business processes was carried out, and the interaction of decision support systems with the subject area was studied
Parallelization of Runge–Kutta Methods for Hardware Implementation
Parallel numerical integration is a valuable tool used in many applications requiring high-performance numerical solvers, which is of great interest nowadays due to the increasing difficulty and complexity in differential problems. One of the possible approaches to increase the efficiency of ODE solvers is to parallelize recurrent numerical methods, making them more suitable for execution in hardware with natural parallelism, e.g., field-programmable gate arrays (FPGAs) or graphical processing units (GPUs). Some of the simplest and most popular ODE solvers are explicit Runge–Kutta methods. Despite the high implementability and overall simplicity of the Runge–Kutta schemes, recurrent algorithms remain weakly suitable for execution in parallel computers. In this paper, we propose an approach for parallelizing classical explicit Runge–Kutta methods to construct efficient ODE solvers with pipeline architecture. A novel technique to obtain parallel finite-difference models based on Runge–Kutta integration is described. Three test initial value problems are considered to evaluate the properties of the obtained solvers. It is shown that the truncation error of the parallelized Runge–Kutta method does not significantly change after its known recurrent version. A possible speed up in calculations is estimated using Amdahl’s law and is approximately 2.5–3-times. Block diagrams of fixed-point parallel ODE solvers suitable for hardware implementation on FPGA are given
In-source laser photoionization spectroscopy of Bi isotopes: accuracy of the technique and methods of data analysis
The in-source laser photoionization spectroscopy was applied to study neutron-deficient Bi isotopes. Data analysis and accuracy-related aspects of this technique are discussed. The accuracy of the peak position evaluation is estimated. An “integration method” for nuclear spin determination in the case of partially resolved hyperfine spectra is discussed in detail
In-source laser photoionization spectroscopy of Bi isotopes:accuracy of the technique and methods of data analysis
The in-source laser photoionization spectroscopy was applied to study neutron-deficient Bi isotopes. Data analysis and accuracy-related aspects of this technique are discussed. The accuracy of the peak position evaluation is estimated. An “integration method” for nuclear spin determination in the case of partially resolved hyperfine spectra is discussed in detail.</p
- …