3,176 research outputs found
A determination of H_0 with the CLASS gravitational lens B1608+656: II. Mass models and the Hubble constant from lensing
EDITED FROM PAPER: We present mass models of the four-image gravitational
lens system B1608+656. A mass model for the lens galaxies has been determined
that reproduces the image positions, two out of three flux-density ratios and
the model time delays.
Using the time delays determined by Fassnacht et al. (1999a), we find that
the best isothermal mass model gives H_0=59^{+7}_{-6} km/s/Mpc for Omega_m=1
and Omega_l=0.0, or H_0=(65-63)^{+7}_{-6} km/s/Mpc for Omega_m=0.3 and Omega_l
= 0.0-0.7 (95.4% statistical confidence). A systematic error of +/-15 km/s/Mpc
is estimated.
This cosmological determination of H_0 agrees well with determinations from
three other gravitational lens systems (i.e. B0218+357, Q0957+561 and
PKS1830-211), SNe Ia, the S-Z effect and local determinations. The current
agreement on H_0 from four out of five gravitational lens systems (i)
emphasizes the reliability of its determination from isolated gravitational
lens systems and (ii) suggests that a close-to-isothermal mass profile can
describe disk galaxies, ellipticals and central cluster ellipticals.
The average of H_0 from B0218+357, Q0957+561, B1608+656 and PKS1830-211,
gives H_0(GL)=69 +/-7 km/s/Mpc for a flat universe with Omega_m=1 or H_0(GL)=74
+/-8 km/s/Mpc for Omega_m=0.3 and Omega_l=0.0-0.7. When including PG1115+080,
these values decrease to 64 +/-11 km/s/Mpc and 68 +/-13 km/s/Mpc (2-sigma
errors), respectively.Comment: Accepted for publication in ApJ. 34 pages, 4 figure
A time-delay determination from VLA light curves of the CLASS gravitational lens B1600+434
We present Very Large Array (VLA) 8.5-GHz light curves of the two lens images
of the Cosmic Lens All Sky Survey (CLASS) gravitational lens B1600+434. We find
a nearly linear decrease of 18-19% in the flux densities of both lens images
over a period of eight months (February-October) in 1998. Additionally, the
brightest image A shows modulations up to 11% peak-to-peak on scales of days to
weeks over a large part of the observing period. Image B varies significantly
less on this time scale. We conclude that most of the short-term variability in
image A is not intrinsic source variability, but is most likely caused by
microlensing in the lens galaxy. The alternative, scintillation by the ionized
Galactic ISM, is shown to be implausible based on its strong opposite frequency
dependent behavior compared with results from multi-frequency WSRT monitoring
observations (Koopmans & de Bruyn 1999). From these VLA light curves we
determine a median time delay between the lens images of 47^{+5}_{-6} d (68%)
or 47^{+12}_{-9} d (95%). We use two different methods to derive the time
delay; both give the same result within the errors. We estimate an additional
systematic error between -8 and +7 d. If the mass distribution of lens galaxy
can be described by an isothermal model (Koopmans, de Bruyn & Jackson 1998),
this time delay would give a value for the Hubble parameter, H_0=57^{+14}_{-11}
(95% statistical) ^{+26}_{-15} (systematic) km/s/Mpc (Omega_m=1 and
Omega_Lambda=0). Similarly, the Modified-Hubble-Profile mass model would give
H_0=74^{+18}_{-15} (95% statistical) ^{+22}_{-22} (systematic) km/s/Mpc. For
Omega_m=0.3 and Omega_Lambda=0.7, these values increase by 5.4%. ... (ABRIDGED)Comment: 14 pages, 6 figures, accepted for publication in Astronomy &
Astrophysics (Figs 1 and 3 with degraded resolution
Dissecting the Gravitational Lens B1608+656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State
Strong gravitational lens systems with measured time delays between the
multiple images provide a method for measuring the "time-delay distance" to the
lens, and thus the Hubble constant. We present a Bayesian analysis of the
strong gravitational lens system B1608+656, incorporating (i) new, deep Hubble
Space Telescope (HST) observations, (ii) a new velocity dispersion measurement
of 260+/-15 km/s for the primary lens galaxy, and (iii) an updated study of the
lens' environment. When modeling the stellar dynamics of the primary lens
galaxy, the lensing effect, and the environment of the lens, we explicitly
include the total mass distribution profile logarithmic slope gamma' and the
external convergence kappa_ext; we marginalize over these parameters, assigning
well-motivated priors for them, and so turn the major systematic errors into
statistical ones. The HST images provide one such prior, constraining the lens
mass density profile logarithmic slope to be gamma'=2.08+/-0.03; a combination
of numerical simulations and photometric observations of the B1608+656 field
provides an estimate of the prior for kappa_ext: 0.10 +0.08/-0.05. This latter
distribution dominates the final uncertainty on H_0. Compared with previous
work on this system, the new data provide an increase in precision of more than
a factor of two. In combination with the WMAP 5-year data set, we find that the
B1608+656 data set constrains the curvature parameter to be -0.031 < Omega_k <
0.009 (95% CL), a level of precision comparable to that afforded by the current
Type Ia SNe sample. Asserting a flat spatial geometry, we find that, in
combination with WMAP, H_0 = 69.7 +4.9/-5.0 km/s/Mpc and w=-0.94 +0.17/-0.19
(68% CL), suggesting that the observations of B1608+656 constrain w as tightly
as do the current Baryon Acoustic Oscillation data. (abridged)Comment: 24 pages, 8 figures, revisions based on referee's comments, accepted
for publication in Ap
The Environments of Low and High Luminosity Radio Galaxies at Moderate Redshifts
In the local Universe, high-power radio galaxies live in lower density
environments than low-luminosity radio galaxies. If this trend continues to
higher redshifts, powerful radio galaxies would serve as efficient probes of
moderate redshift groups and poor clusters. Photometric studies of radio
galaxies at 0.3 < z < 0.5 suggest that the radio luminosity-environment
correlation disappears at moderate redshifts, though this could be the result
of foreground/background contamination affecting the photometric measures of
environment. We have obtained multi-object spectroscopy of in the fields of 14
lower luminosity (L_1.4GHz
1.2x10^25 W/Hz) radio galaxies at z ~ 0.3 to spectroscopically investigate the
link between the environment and the radio luminosity of radio galaxies at
moderate redshifts. Our results support the photometric analyses; there does
not appear to be a correlation between the luminosity of a radio galaxy and its
environment at moderate redshifts. Hence, radio galaxies are not efficient
signposts for group environments at moderate redshifts.Comment: 7 pages, 9 figures, Accepted for publication in A
Mass along the Line of Sight to the Gravitational Lens B1608+656: Galaxy Groups and Implications for H_0
We report the discovery of four groups of galaxies along the line of sight to the B1608+656 gravitational lens system. One group is at the redshift of the primary lensing galaxy (z = 0.631) and appears to have a low mass, with eight spectroscopically confirmed members and an estimated velocity dispersion of 150 ± 60 km s^(-1). The three other groups are in the foreground of the lens. These groups contain ~10 confirmed members each and are located at redshifts of 0.265, 0.426, and 0.52. Two of the three additional groups are centered roughly on the lens system, while the third is centered ~1' south of the lens. We investigate the effect of each of the four groups on the gravitational lensing potential of the B1608+656 system, with a particular focus on the implications for the value of H_0 derived from this system. We find that each group provides an external convergence of ~0.005-0.060, depending on the assumptions made in the calculation. For the B1608+656 system, the stellar velocity dispersion of the lensing galaxy has been measured, thus breaking the mass sheet degeneracy due to the group that is physically associated with the lens. The effect of the other groups along the line of sight can be folded into the overall uncertainties due to large-scale structure (LSS) along the line of sight. Because B1608+656 appears to lie along an overdense line of sight, the LSS will cause the measurement of H_0 to be biased high for this system. This effect could be 5% or greater
Measuring gravitational lens time delays using low-resolution radio monitoring observations
Obtaining lensing time delay measurements requires long-term monitoring
campaigns with a high enough resolution (< 1 arcsec) to separate the multiple
images. In the radio, a limited number of high-resolution interferometer arrays
make these observations difficult to schedule. To overcome this problem, we
propose a technique for measuring gravitational time delays which relies on
monitoring the total flux density with low-resolution but high-sensitivity
radio telescopes to follow the variation of the brighter image. This is then
used to trigger high-resolution observations in optimal numbers which then
reveal the variation in the fainter image. We present simulations to assess the
efficiency of this method together with a pilot project observing radio lens
systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very
Large Array (VLA) observations. This new method is promising for measuring time
delays because it uses relatively small amounts of time on high-resolution
telescopes. This will be important because instruments that have high
sensitivity but limited resolution, together with an optimum usage of followup
high-resolution observations from appropriate radio telescopes may in the
future be useful for gravitational lensing time delay measurements by means of
this new method.Comment: 10 pages, 7 figures, accepted by MNRA
- …