90 research outputs found

    Non-Stochastic Hypothesis Testing with Application to Privacy Against Hypothesis-Testing Adversary

    Get PDF
    In this paper, we consider privacy against hypothesis testing adversaries within a non-stochastic framework. We develop a theory of non-stochastic hypothesis testing by borrowing the notion of uncertain variables from non-stochastic information theory. We define tests as binary-valued mappings on uncertain variables and prove a fundamental bound on the best performance of tests in non-stochastic hypothesis testing. We use this bound to develop a measure of privacy. We then construct reporting policies with prescribed privacy and utility guarantees. The utility of a reporting policy is measured by the distance between the reported and original values. We illustrate the effects of using such privacy-preserving reporting polices on a publicly-available practical dataset of preferences and demographics of young individuals, aged between 15-30, with Slovakian nationality

    Development and Analysis of Deterministic Privacy-Preserving Policies Using Non-Stochastic Information Theory

    Get PDF
    A deterministic privacy metric using non-stochastic information theory is developed. Particularly, minimax information is used to construct a measure of information leakage, which is inversely proportional to the measure of privacy. Anyone can submit a query to a trusted agent with access to a non-stochastic uncertain private dataset. Optimal deterministic privacy-preserving policies for responding to the submitted query are computed by maximizing the measure of privacy subject to a constraint on the worst-case quality of the response (i.e., the worst-case difference between the response by the agent and the output of the query computed on the private dataset). The optimal privacy-preserving policy is proved to be a piecewise constant function in the form of a quantization operator applied on the output of the submitted query. The measure of privacy is also used to analyze the performance of kk-anonymity methodology (a popular deterministic mechanism for privacy-preserving release of datasets using suppression and generalization techniques), proving that it is in fact not privacy-preserving.Comment: improved introduction and numerical exampl

    Ensuring Privacy with Constrained Additive Noise by Minimizing Fisher Information

    Get PDF
    The problem of preserving the privacy of individual entries of a database when responding to linear or nonlinear queries with constrained additive noise is considered. For privacy protection, the response to the query is systematically corrupted with an additive random noise whose support is a subset or equal to a pre-defined constraint set. A measure of privacy using the inverse of the trace of the Fisher information matrix is developed. The Cramer-Rao bound relates the variance of any estimator of the database entries to the introduced privacy measure. The probability density that minimizes the trace of the Fisher information (as a proxy for maximizing the measure of privacy) is computed. An extension to dynamic problems is also presented. Finally, the results are compared to the differential privacy methodology

    A Study of Truck Platooning Incentives Using a Congestion Game

    Full text link
    We introduce an atomic congestion game with two types of agents, cars and trucks, to model the traffic flow on a road over various time intervals of the day. Cars maximize their utility by finding a trade-off between the time they choose to use the road, the average velocity of the flow at that time, and the dynamic congestion tax that they pay for using the road. In addition to these terms, the trucks have an incentive for using the road at the same time as their peers because they have platooning capabilities, which allow them to save fuel. The dynamics and equilibria of this game-theoretic model for the interaction between car traffic and truck platooning incentives are investigated. We use traffic data from Stockholm to validate parts of the modeling assumptions and extract reasonable parameters for the simulations. We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We perform a comprehensive simulation study to understand the influence of various factors, such as the drivers' value of time and the percentage of the trucks that are equipped with platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie

    Privacy-Preserving Public Release of Datasets for Support Vector Machine Classification

    Get PDF
    We consider the problem of publicly releasing a dataset for support vector machine classification while not infringing on the privacy of data subjects (i.e., individuals whose private information is stored in the dataset). The dataset is systematically obfuscated using an additive noise for privacy protection. Motivated by the Cramer-Rao bound, inverse of the trace of the Fisher information matrix is used as a measure of the privacy. Conditions are established for ensuring that the classifier extracted from the original dataset and the obfuscated one are close to each other (capturing the utility). The optimal noise distribution is determined by maximizing a weighted sum of the measures of privacy and utility. The optimal privacy-preserving noise is proved to achieve local differential privacy. The results are generalized to a broader class of optimization-based supervised machine learning algorithms. Applicability of the methodology is demonstrated on multiple datasets

    Distributionally-Robust Optimization with Noisy Data for Discrete Uncertainties Using Total Variation Distance

    Full text link
    Stochastic programs where the uncertainty distribution must be inferred from noisy data samples are considered. The stochastic programs are approximated with distributionally-robust optimizations that minimize the worst-case expected cost over ambiguity sets, i.e., sets of distributions that are sufficiently compatible with the observed data. In this paper, the ambiguity sets capture the set of probability distributions whose convolution with the noise distribution remains within a ball centered at the empirical noisy distribution of data samples parameterized by the total variation distance. Using the prescribed ambiguity set, the solutions of the distributionally-robust optimizations converge to the solutions of the original stochastic programs when the numbers of the data samples grow to infinity. Therefore, the proposed distributionally-robust optimization problems are asymptotically consistent. This is proved under the assumption that the distribution of the noise is uniformly diagonally dominant. More importantly, the distributionally-robust optimization problems can be cast as tractable convex optimization problems and are therefore amenable to large-scale stochastic problems
    • …
    corecore