566 research outputs found

    Efficient, Superstabilizing Decentralised Optimisation for Dynamic Task Allocation Environments

    No full text
    Decentralised optimisation is a key issue for multi-agent systems, and while many solution techniques have been developed, few provide support for dynamic environments, which change over time, such as disaster management. Given this, in this paper, we present Bounded Fast Max Sum (BFMS): a novel, dynamic, superstabilizing algorithm which provides a bounded approximate solution to certain classes of distributed constraint optimisation problems. We achieve this by eliminating dependencies in the constraint functions, according to how much impact they have on the overall solution value. In more detail, we propose iGHS, which computes a maximum spanning tree on subsections of the constraint graph, in order to reduce communication and computation overheads. Given this, we empirically evaluate BFMS, which shows that BFMS reduces communication and computation done by Bounded Max Sum by up to 99%, while obtaining 60-88% of the optimal utility

    Sharing rides with friends: a coalition formation algorithm for ridesharing

    No full text
    We consider the Social Ridesharing (SR) problem, where a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on the associated optimisation problem of forming cars to minimise the travel cost of the overall system modelling such problem as a graph constrained coalition formation (GCCF) problem, where the set of feasible coalitions is restricted by a graph (i.e., the social network). Moreover, we significantly extend the state of the art algorithm for GCCF, i.e., the CFSS algorithm, to solve our GCCF model of the SR problem. Our empirical evaluation uses a real dataset for both spatial (GeoLife) and social data (Twitter), to validate the applicability of our approach in a realistic application scenario. Empirical results show that our approach computes optimal solutions for systems of medium scale (up to 100 agents) providing significant cost reductions (up to -36.22%). Moreover, we can provide approximate solutions for very large systems (i.e., up to 2000 agents) and good quality guarantees (i.e., with an approximation ratio of 1.41 in the worst case) within minutes (i.e., 100 seconds

    Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm

    No full text
    This paper considers the problem of performing decentralised coordination of low-power embedded devices (as is required within many environmental sensing and surveillance applications). Specifically, we address the generic problem of maximising social welfare within a group of interacting agents. We propose a novel representation of the problem, as a cyclic bipartite factor graph, composed of variable and function nodes (representing the agents’ states and utilities respectively). We show that such representation allows us to use an extension of the max-sum algorithm to generate approximate solutions to this global optimisation problem through local decentralised message passing. We empirically evaluate this approach on a canonical coordination problem (graph colouring), and benchmark it against state of the art approximate and complete algorithms (DSA and DPOP). We show that our approach is robust to lossy communication, that it generates solutions closer to those of DPOP than DSA is able to, and that it does so with a communication cost (in terms of total messages size) that scales very well with the number of agents in the system (compared to the exponential increase of DPOP). Finally, we describe a hardware implementation of our algorithm operating on low-power Chipcon CC2431 System-on-Chip sensor nodes

    Resource-Aware Junction Trees for Efficient Multi-Agent Coordination

    No full text
    In this paper we address efficient decentralised coordination of cooperative multi-agent systems by taking into account the actual computation and communication capabilities of the agents. We consider coordination problems that can be framed as Distributed Constraint Optimisation Problems, and as such, are suitable to be deployed on large scale multi-agent systems such as sensor networks or multiple unmanned aerial vehicles. Specifically, we focus on techniques that exploit structural independence among agents’ actions to provide optimal solutions to the coordination problem, and, in particular, we use the Generalized Distributive Law (GDL) algorithm. In this settings, we propose a novel resource aware heuristic to build junction trees and to schedule GDL computations across the agents. Our goal is to minimise the total running time of the coordination process, rather than the theoretical complexity of the computation, by explicitly considering the computation and communication capabilities of agents. We evaluate our proposed approach against DPOP, RDPI and a centralized solver on a number of benchmark coordination problems, and show that our approach is able to provide optimal solutions for DCOPs faster than previous approaches. Specifically, in the settings considered, when resources are scarce our approach is up to three times faster than DPOP (which proved to be the best among the competitors in our settings)

    Decentralised Coordination in RoboCup Rescue

    No full text
    Emergency responders are faced with a number of significant challenges when managing major disasters. First, the number of rescue tasks posed is usually larger than the number of responders (or agents) and the resources available to them. Second, each task is likely to require a different level of effort in order to be completed by its deadline. Third, new tasks may continually appear or disappear from the environment, thus requiring the responders to quickly recompute their allocation of resources. Fourth, forming teams or coalitions of multiple agents from different agencies is vital since no single agency will have all the resources needed to save victims, unblock roads, and extinguish the ?res which might erupt in the disaster space. Given this, coalitions have to be efficiently selected and scheduled to work across the disaster space so as to maximise the number of lives and the portion of the infrastructure saved. In particular, it is important that the selection of such coalitions should be performed in a decentralised fashion in order to avoid a single point of failure in the system. Moreover, it is critical that responders communicate only locally given they are likely to have limited battery power or minimal access to long range communication devices. Against this background, we provide a novel decentralised solution to the coalition formation process that pervades disaster management. More specifically, we model the emergency management scenario defined in the RoboCup Rescue disaster simulation platform as a Coalition Formation with Spatial and Temporal constraints (CFST) problem where agents form coalitions in order to complete tasks, each with different demands. In order to design a decentralised algorithm for CFST we formulate it as a Distributed Constraint Optimisation problem and show how to solve it using the state-of-the-art Max-Sum algorithm that provides a completely decentralised message-passing solution. We then provide a novel algorithm (F-Max-Sum) that avoids sending redundant messages and efficiently adapts to changes in the environment. In empirical evaluations, our algorithm is shown to generate better solutions than other decentralised algorithms used for this problem

    ARBEITSBEREICH WISSENSBASIERTE SYSTEME TEAM PROGRAMMING IN GOLOG UNDER PARTIAL OBSERVABILITY

    Get PDF
    Abstract. We present and explore the agent programming language TEAMGOLOG, which is a novel approach to programming a team of cooperative agents under partial observability. Every agent is associated with a partial control program in Golog, which is completed by the TEAMGOLOG interpreter in an optimal way by assuming a decision-theoretic semantics. The approach is based on the key concepts of a synchronization state and a communication state, which allow the agents to passively resp. actively coordinate their behavior, while keeping their belief states, observations, and activities invisible to the other agents. We show the practical usefulness of the TEAMGOLOG approach in a rescue simulated domain. We describe the algorithms behind the TEAMGOLOG interpreter and provide a prototype implementation. We also show through experimental results that the TEAMGOLOG approach outperforms a standard greedy one in the rescue simulated domain

    Algorithms for Graph-Constrained Coalition Formation in the Real World

    Get PDF
    Coalition formation typically involves the coming together of multiple, heterogeneous, agents to achieve both their individual and collective goals. In this paper, we focus on a special case of coalition formation known as Graph-Constrained Coalition Formation (GCCF) whereby a network connecting the agents constrains the formation of coalitions. We focus on this type of problem given that in many real-world applications, agents may be connected by a communication network or only trust certain peers in their social network. We propose a novel representation of this problem based on the concept of edge contraction, which allows us to model the search space induced by the GCCF problem as a rooted tree. Then, we propose an anytime solution algorithm (CFSS), which is particularly efficient when applied to a general class of characteristic functions called m+am+a functions. Moreover, we show how CFSS can be efficiently parallelised to solve GCCF using a non-redundant partition of the search space. We benchmark CFSS on both synthetic and realistic scenarios, using a real-world dataset consisting of the energy consumption of a large number of households in the UK. Our results show that, in the best case, the serial version of CFSS is 4 orders of magnitude faster than the state of the art, while the parallel version is 9.44 times faster than the serial version on a 12-core machine. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems of agents (i.e., with more than 2700 agents).Comment: Accepted for publication, cite as "in press

    Anytime coalition structure generation on synergy graphs

    No full text
    We consider the coalition structure generation (CSG) problem on synergy graphs, which arises in many practical applications where communication constraints, social or trust relationships must be taken into account when forming coalitions. We propose a novel representation of this problem based on the concept of edge contraction, and an innovative branch and bound approach (CFSS), which is particularly efficient when applied to a general class of characteristic functions. This new model provides a non-redundant partition of the search space, hence allowing an effective parallelisation. We evaluate CFSS on two benchmark functions, the edge sum with coordination cost and the collective energy purchasing functions, comparing its performance with the best algorithm for CSG on synergy graphs: DyCE. The latter approach is centralised and cannot be efficiently parallelised due to the exponential memory requirements in the number of agents, which limits its scalability (while CFSS memory requirements are only polynomial). Our results show that, when the graphs are very sparse, CFSS is 4 orders of magnitude faster than DyCE. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems (i.e., with more than 2700 agents

    A tutorial on optimization for multi-agent systems

    Get PDF
    Research on optimization in multi-agent systems (MASs) has contributed with a wealth of techniques to solve many of the challenges arising in a wide range of multi-agent application domains. Multi-agent optimization focuses on casting MAS problems into optimization problems. The solving of those problems could possibly involve the active participation of the agents in a MAS. Research on multi-agent optimization has rapidly become a very technical, specialized field. Moreover, the contributions to the field in the literature are largely scattered. These two factors dramatically hinder access to a basic, general view of the foundations of the field. This tutorial is intended to ease such access by providing a gentle introduction to fundamental concepts and techniques on multi-agent optimization. © 2013 The Author.Peer Reviewe
    • 

    corecore