60 research outputs found
Raspberry Pi Based Intelligent Wireless Sensor Node for Localized Torrential Rain Monitoring
Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised
Bayesian Information Criterion Based Feature Filtering for the Fusion of Multiple Features in High-Spatial-Resolution Satellite Scene Classification
This paper presents a novel classification method for high-spatial-resolution satellite scene classification introducing Bayesian information criterion (BIC)-based feature filtering process to further eliminate opaque and redundant information between multiple features. Firstly, two diverse and complementary feature descriptors are extracted to characterize the satellite scene. Then, sparse canonical correlation analysis (SCCA) with penalty function is employed to fuse the extracted feature descriptors and remove the ambiguities and redundancies between them simultaneously. After that, a two-phase Bayesian information criterion (BIC)-based feature filtering process is designed to further filter out redundant information. In the first phase, we gradually impose a constraint via an iterative process to set a constraint on the loadings for averting sparse correlation descending below to a lower confidence limit of the approximated canonical correlation. In the second phase, Bayesian information criterion (BIC) is utilized to conduct the feature filtering which sets the smallest loading in absolute value to zero in each iteration for all features. Lastly, a support vector machine with pyramid match kernel is applied to obtain the final result. Experimental results on high-spatial-resolution satellite scenes demonstrate that the suggested approach achieves satisfactory performance in classification accuracy
Multiple feature fusion using a multiset aggregated canonical correlation analysis for high spatial resolution satellite image scene classification
n/
SRC-Net: Bitemporal Spatial Relationship Concerned Network for Change Detection
Change detection (CD) in remote sensing imagery is a crucial task with applications in environmental monitoring, urban development, and disaster management. CD involves utilizing bitemporal images to identify changes over time. The bitemporal spatial relationships between features at the same location at different times play a key role in this process. However, existing change detection networks often do not fully leverage these spatial relationships during bitemporal feature extraction and fusion. In this work, we propose SRC-Net: a bitemporal spatial relationship concerned network for CD. The proposed SRC-Net includes a perception and interaction module that incorporates spatial relationships and establishes a cross-branch perception mechanism to enhance the precision and robustness of feature extraction. In addition, a patch–mode joint feature fusion module is introduced to address information loss in current methods. It considers different change modes and concerns about spatial relationships, resulting in more expressive fusion features. Furthermore, we construct a novel network using these two relationship concerned modules and conducted experiments on the LEVIR-CD and WHU Building datasets. The experimental results demonstrate that our network outperforms state-of-the-art methods while maintaining a modest parameter count. We believe that our approach sets a new paradigm for CD and will inspire further advancements in the field
OFDM peak-to-average power ratio reduction by combining the PTS with golay complementary sequences and reed-muller codes
WHUVID: A Large-Scale Stereo-IMU Dataset for Visual-Inertial Odometry and Autonomous Driving in Chinese Urban Scenarios
In this paper, we present a challenging stereo-inertial dataset collected onboard a sports utility vehicle (SUV) for the tasks of visual-inertial odometry (VIO), simultaneous localization and mapping (SLAM), autonomous driving, object detection, and other computer vision techniques. We recorded a large set of time-synchronized stereo image sequences (2 × 1280 × 720 @ 30 fps RGB) and corresponding inertial measurement unit (IMU) readings (400 Hz) from a Stereolabs ZED2 camera, along with centimeter-level-accurate six-degree-of-freedom ground truth (100 Hz) from a u-blox GNSS-IMU navigation device with real-time kinematic correction signals. The dataset comprises 34 sequences recorded during November 2020 in Wuhan, the largest city of Central China. Further, the dataset contains abundant unique urban scenes and features of a complex modern metropolis, which have rarely appeared in previously released benchmarks. Results from milestone VIO/SLAM algorithms reveal that methods exhibiting excellent performance on established datasets such as KITTI and EuRoC perform unsatisfactorily when moved outside the laboratory to the real world. We expect our dataset to reduce this limitation by providing more challenging and diverse scenarios to the research community. The full dataset with raw and calibrated data is publicly available along with a lightweight MATLAB/Python toolbox for preprocessing and evaluation. The dataset can be downloaded in its entirety from the uniform resource locator (URL) we provide in the main text
- …