154 research outputs found

    Low-complexity Location-aware Multi-user Massive MIMO Beamforming for High Speed Train Communications

    Full text link
    Massive Multiple-input Multiple-output (MIMO) adaption is one of the primary evolving objectives for the next generation high speed train (HST) communication system. In this paper, we consider how to design an efficient low-complexity location-aware beamforming for the multi-user (MU) massive MIMO system in HST scenario. We first put forward a low-complexity beamforming based on location information, where multiple users are considered. Then, without considering inter-beam interference, a closed-form solution to maximize the total service competence of base station (BS) is proposed in this MU HST scenario. Finally, we present a location-aid searching-based suboptimal solution to eliminate the inter-beam interference and maximize the BS service competence. Various simulations are given to exhibit the advantages of our proposed massive MIMO beamforming method.Comment: This paper has been accepted for future publication by VTC2017-Sprin

    An Extended Fano's Inequality for the Finite Blocklength Coding

    Full text link
    Fano's inequality reveals the relation between the conditional entropy and the probability of error . It has been the key tool in proving the converse of coding theorems in the past sixty years. In this paper, an extended Fano's inequality is proposed, which is tighter and more applicable for codings in the finite blocklength regime. Lower bounds on the mutual information and an upper bound on the codebook size are also given, which are shown to be tighter than the original Fano's inequality. Especially, the extended Fano's inequality is tight for some symmetric channels such as the qq-ary symmetric channels (QSC).Comment: 5 pages, 4 figures, submitted to IEEE ISIT 201

    A Queueing Characterization of Information Transmission over Block Fading Rayleigh Channels in the Low SNR

    Full text link
    Unlike the AWGN (additive white gaussian noise) channel, fading channels suffer from random channel gains besides the additive Gaussian noise. As a result, the instantaneous channel capacity varies randomly along time, which makes it insufficient to characterize the transmission capability of a fading channel using data rate only. In this paper, the transmission capability of a buffer-aided block Rayleigh fading channel is examined by a constant rate input data stream, and reflected by several parameters such as the average queue length, stationary queue length distribution, packet delay and overflow probability. Both infinite-buffer model and finite-buffer model are considered. Taking advantage of the memoryless property of the service provided by the channel in each block in the the low SNR (signal-to-noise ratio) regime, the information transmission over the channel is formulated as a \textit{discrete time discrete state} D/G/1D/G/1 queueing problem. The obtained results show that block fading channels are unable to support a data rate close to their ergodic capacity, no matter how long the buffer is, even seen from the application layer. For the finite-buffer model, the overflow probability is derived with explicit expression, and is shown to decrease exponentially when buffer size is increased, even when the buffer size is very small.Comment: 29 pages, 11 figures. More details on the proof of Theorem 1 and proposition 1 can be found in "Queueing analysis for block fading Rayleigh channels in the low SNR regime ", IEEE WCSP 2013.It has been published by IEEE Trans. on Veh. Technol. in Feb. 201

    New-Type Hoeffding's Inequalities and Application in Tail Bounds

    Full text link
    It is well known that Hoeffding's inequality has a lot of applications in the signal and information processing fields. How to improve Hoeffding's inequality and find the refinements of its applications have always attracted much attentions. An improvement of Hoeffding inequality was recently given by Hertz \cite{r1}. Eventhough such an improvement is not so big, it still can be used to update many known results with original Hoeffding's inequality, especially for Hoeffding-Azuma inequality for martingales. However, the results in original Hoeffding's inequality and its refinement one by Hertz only considered the first order moment of random variables. In this paper, we present a new type of Hoeffding's inequalities, where the high order moments of random variables are taken into account. It can get some considerable improvements in the tail bounds evaluation compared with the known results. It is expected that the developed new type Hoeffding's inequalities could get more interesting applications in some related fields that use Hoeffding's results.Comment: 8 pages, 1 figur

    Tracking Angles of Departure and Arrival in a Mobile Millimeter Wave Channel

    Full text link
    Millimeter wave provides a very promising approach for meeting the ever-growing traffic demand in next generation wireless networks. To utilize this band, it is crucial to obtain the channel state information in order to perform beamforming and combining to compensate for severe path loss. In contrast to lower frequencies, a typical millimeter wave channel consists of a few dominant paths. Thus it is generally sufficient to estimate the path gains, angles of departure (AoDs), and angles of arrival (AoAs) of those paths. Proposed in this paper is a dual timescale model to characterize abrupt channel changes (e.g., blockage) and slow variations of AoDs and AoAs. This work focuses on tracking the slow variations and detecting abrupt changes. A Kalman filter based tracking algorithm and an abrupt change detection method are proposed. The tracking algorithm is compared with the adaptive algorithm due to Alkhateeb, Ayach, Leus and Heath (2014) in the case with single radio frequency chain. Simulation results show that to achieve the same tracking performance, the proposed algorithm requires much lower signal-to-noise-ratio (SNR) and much fewer pilots than the other algorithm. Moreover, the change detection method can always detect abrupt changes with moderate number of pilots and SNR.Comment: 6 pages, 7 figures, submitted to ICC 201
    corecore