503 research outputs found

    Calpeptin is a potent cathepsin inhibitor and drug candidate for SARS-CoV-2 infections

    Get PDF
    Several drug screening campaigns identified Calpeptin as a drug candidate against SARS-CoV-2. Initially reported to target the viral main protease (Mpro), its moderate activity in Mpro inhibition assays hints at a second target. Indeed, we show that Calpeptin is an extremely potent cysteine cathepsin inhibitor, a finding additionally supported by X-ray crystallography. Cell infection assays proved Calpeptin’s efficacy against SARS-CoV-2. Treatment of SARS-CoV-2-infected Golden Syrian hamsters with sulfonated Calpeptin at a dose of 1 mg/kg body weight reduces the viral load in the trachea. Despite a higher risk of side effects, an intrinsic advantage in targeting host proteins is their mutational stability in contrast to highly mutable viral targets. Here we show that the inhibition of cathepsins, a protein family of the host organism, by calpeptin is a promising approach for the treatment of SARS-CoV-2 and potentially other viral infections

    Massive X-ray screening reveals two allosteric drug binding sites of SARS-CoV-2 main protease

    Get PDF
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of repurposing drug libraries containing 5953 individual compounds against the SARS-CoV-2 main protease (Mpro), which is a potent drug target as it is essential for the virus replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. Interestingly, two compounds bind outside the active site to the native dimer interface in close proximity to the S1 binding pocket. Another compound binds in a cleft between the catalytic and dimerization domain of Mpro. Neither binding site is related to the enzymatic active site and both represent attractive targets for drug development against SARS-CoV-2. This X-ray screening approach thus has the potential to help deliver an approved drug on an accelerated time-scale for this and future pandemics

    X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease

    Get PDF
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2

    Crystal structures of native cytochrome c6_6 from Thermosynechococcus elongatus in two different space groups and implications for its oligomerization

    No full text
    Native cytochrome c6_6 was purified from an extract of strain BP-1 of the thermophilic cyanobacterium Thermosynechococcus elongatus. The protein was crystallized, and with only slight modifications of the buffer and vapour-diffusion conditions two different space groups were observed, namely H3 and C2. Both crystal structures were solved; they contained three and six molecules per asymmetric unit and were refined to 1.7 and 2.25 Å resolution, respectively. To date, the structure of native cytochrome c6_6 from T. elongatus has only been reported as a monomer using NMR spectroscopy, i.e. without addressing putative oligomerization, and related structures have only previously been solved using X-ray crystallography after recombinant gene overexpression in Escherichia coli. The reported space groups of related cyanobacterial cytochrome c6_6 structures differ from those reported here. Interestingly, the protein–protein interfaces that were observed utilizing X-ray crystallography could also explain homo-oligomerization in solution; specifically, trimerization is indicated by infra-red dynamic light scattering and blue native gel electrophoresis in solution. Trimers were also detected by mass spectrometry. Furthermore, there is an indication of post-translational methylation in the crystal structure. Additionally, the possibility of modifying the crystal size and the redox activity in the context of photosynthesis is shaping the investigated cytochrome as a highly suitable model protein for advanced serial crystallography at highly brilliant X-ray free-electron laser sources

    Policy Based Adaptive Services for Mobile Commerce

    No full text
    In this paper we describe a novel adaptation architecture as well as a process for the development of policy based adaptive services for mobile commerce. Our architecture is based on three basic requirements and defines the four core elements: context, policies, policy decision point and policy enforcement point. The proposed approach is based on the reuse and adaptation of existing and matured standards, APIs and middleware for representing context information, usage of policies for reasoning and for the communication between the involved parties. Our aim is to present a simple architecture taking as much as possible available work and software into account to support the rapid development of context aware mobile services. Furthermore we present a novel methodology for the definition of context information and policies that is supported by a new UML based diagram and a module pipeline. We show the feasibility of the architecture as well as of the process based on a prototype which implements a typical scenario for an adaptive mobile service

    Characterization of Conjugates between α-Lactalbumin and Benzyl Isothiocyanate—Effects on Molecular Structure and Proteolytic Stability

    No full text
    In complex foods, bioactive secondary plant metabolites (SPM) can bind to food proteins. Especially when being covalently bound, such modifications can alter the structure and, thus, the functional and biological properties of the proteins. Additionally, the bioactivity of the SPM can be affected as well. Consequently, knowledge of the influence of chemical modifications on these properties is particularly important for food processing, food safety, and nutritional physiology. As a model, the molecular structure of conjugates between the bioactive metabolite benzyl isothiocyanate (BITC, a hydrolysis product of the glucosinolate glucotropaeolin) and the whey protein α-lactalbumin (α-LA) was investigated using circular dichroism spectroscopy, anilino-1-naphthalenesulfonic acid fluorescence, and dynamic light scattering. Free amino groups were determined before and after the BITC conjugation. Finally, mass spectrometric analysis of the BITC-α-LA protein hydrolysates was performed. As a result of the chemical modifications, a change in the secondary structure of α-LA and an increase in surface hydrophobicity and hydrodynamic radii were documented. BITC modification at the Δ-amino group of certain lysine side chains inhibited tryptic hydrolysis. Furthermore, two BITC-modified amino acids were identified, located at two lysine side chains (K32 and K113) in the amino acid sequence of α-LA.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische UniversitÀt Berli

    Multi-Step Concanavalin A Phase Separation and Early-Stage Nucleation Monitored Via Dynamic and Depolarized Light Scattering

    No full text
    Protein phase separation and protein liquid cluster formation have been observed and analysed in protein crystallization experiments and, in recent years, have been reported more frequently, especially in studies related to membraneless organelles and protein cluster formation in cells. A detailed understanding about the phase separation process preceding liquid dense cluster formation will elucidate what has, so far, been poorly understood—despite intracellular crowding and phase separation being very common processes—and will also provide more insights into the early events of in vitro protein crystallization. In this context, the phase separation and crystallization kinetics of concanavalin A were analysed in detail, which applies simultaneous dynamic light scattering and depolarized dynamic light scattering to obtain insights into metastable intermediate states between the soluble phase and the crystalline form. A multi-step mechanism was identified for ConA phase separation, according to the resultant ACF decay, acquired after an increase in the concentration of the crowding agent until a metastable ConA gel intermediate between the soluble and final crystalline phases was observed. The obtained results also revealed that ConA is trapped in a macromolecular network due to short-range intermolecular protein interactions and is unable to transform back into a non-ergodic solution

    Processing of the SARS-CoV pp1a/ab nsp7–10 region

    No full text
    Severe acute respiratory syndrome coronavirus is the causative agent of a respiratory disease with a high case fatality rate. During the formation of the coronaviral replication/transcription complex, essential steps include processing of the conserved polyprotein nsp7–10 region by the main protease Mpro^{pro} and subsequent complex formation of the released nsp's. Here, we analyzed processing of the coronavirus nsp7–10 region using native mass spectrometry showing consumption of substrate, rise and fall of intermediate products and complexation. Importantly, there is a clear order of cleavage efficiencies, which is influenced by the polyprotein tertiary structure. Furthermore, the predominant product is an nsp7+8(2 : 2) hetero-tetramer with nsp8 scaffold. In conclusion, native MS, opposed to other methods, can expose the processing dynamics of viral polyproteins and the landscape of protein interactions in one set of experiments. Thereby, new insights into protein interactions, essential for generation of viral progeny, were provided, with relevance for development of antivirals

    Crystal structure of an extracellular superoxide dismutase from Onchocerca volvulus and implications for parasite-specific drug development

    No full text
    Superoxide dismutases (SODs) are metalloproteins that are responsible for the dismutation of superoxide anion radicals. SODs are consequently protective against oxidative damage to cellular components. Among other protective mechanisms, the filarial parasite Onchocerca volvulus has a well developed defense system to scavenge toxic free radicals using SODs during migration and sojourning of the microfilariae and adult worms in the human body. O. volvulus is responsible for the neglected disease onchocerciasis or `river blindness'. In the present study, an extracellular Cu/Zn-SOD from O. volvulus (OvEC-SOD) was cloned, purified and crystallized to obtain structural insight into an attractive drug target with the potential to combat onchocerciasis. The recombinant OvEC-SOD forms a dimer and the protein structure was solved and refined to 1.55 Å resolution by X-ray crystallography. Interestingly, a sulfate ion supports the coordination of the conserved copper ion. The overall protein shape was verified by small-angle X-ray scattering. The enzyme shows a different surface charge distribution and different termini when compared with the homologous human SOD. A distinct hydrophobic cleft to which both protomers of the dimer contribute was utilized for a docking approach with compounds that have previously been identified as SOD inhibitors to highlight the potential for individual structure-based drug development
    • 

    corecore