12 research outputs found

    Optical Breath Gas Sensor for Extravehicular Activity Application

    Get PDF
    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

    Optical Breath Gas Sensor for Extravehicular Activity Application

    Get PDF
    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU

    Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids

    Get PDF
    This is an expert consensus from the European Neuroendocrine Tumor Society recommending best practice for the management of pulmonary neuroendocrine tumors including typical and atypical carcinoids. It emphasizes the latest discussion on nomenclature, advances and utility of new diagnostic techniques as well as the limited evidence and difficulties in determining the optimal therapeutic strateg

    Optimizing the management of locally advanced pancreatic cancer with a focus on induction chemotherapy: Expert opinion based on a review of current evidence

    No full text
    Surgical resection of pancreatic cancer offers a chance of cure, but currently only 15-20% of patients are diagnosed with resectable disease, while 30-40% are diagnosed with non-metastatic, unresectable locally advanced pancreatic cancer (LAPC). Treatment for LAPC usually involves systemic chemotherapy, with the aim of controlling disease progression, reducing symptoms and maintaining quality of life. In a small proportion of patients with LAPC, primary chemotherapy may successfully convert unresectable tumours to resectable tumours. In this setting, primary chemotherapy is termed 'induction therapy' rather than 'neoadjuvant'. There is currently a lack of data from randomized studies to thoroughly evaluate the benefits of induction chemotherapy in LAPC, but Phase II and retrospective data have shown improved survival and high R0 resection rates. New chemotherapy regimens such as nab-paclitaxel + gemcitabine and FOLFIRINOX have demonstrated improvement in overall survival for metastatic disease and shown promise as neoadjuvant treatment in patients with resectable and borderline resectable disease. Prospective trials are underway to evaluate these regimens further as induction therapy in LAPC and preliminary data indicate a beneficial effect of FOLFIRINOX in this setting. Further research into optimal induction schedules is needed, as well as guidance on the patients who are most suitable for induction therapy. In this expert opinion article, a panel of surgeons, medical oncologists and gastrointestinal oncologists review the available evidence on management strategies for LAPC and provide their recommendations for patient care, with a particular focus on the use of induction chemotherapy.status: publishe

    Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids

    No full text
    Pulmonary carcinoids (PCs) are rare tumors. As there is a paucity of randomized studies, this expert consensus document represents an initiative by the European Neuroendocrine Tumor Society to provide guidance on their management. PATIENTS AND METHODS: Bibliographical searches were carried out in PubMed for the terms 'pulmonary neuroendocrine tumors', 'bronchial neuroendocrine tumors', 'bronchial carcinoid tumors', 'pulmonary carcinoid', 'pulmonary typical/atypical carcinoid', and 'pulmonary carcinoid and diagnosis/treatment/epidemiology/prognosis'. A systematic review of the relevant literature was carried out, followed by expert review. RESULTS: PCs are well-differentiated neuroendocrine tumors and include low- and intermediate-grade malignant tumors, i.e. typical (TC) and atypical carcinoid (AC), respectively. Contrast CT scan is the diagnostic gold standard for PCs, but pathology examination is mandatory for their correct classification. Somatostatin receptor imaging may visualize nearly 80% of the primary tumors and is most sensitive for metastatic disease. Plasma chromogranin A can be increased in PCs. Surgery is the treatment of choice for PCs with the aim of removing the tumor and preserving as much lung tissue as possible. Resection of metastases should be considered whenever possible with curative intent. Somatostatin analogs are the first-line treatment of carcinoid syndrome and may be considered as first-line systemic antiproliferative treatment in unresectable PCs, particularly of low-grade TC and AC. Locoregional or radiotargeted therapies should be considered for metastatic disease. Systemic chemotherapy is used for progressive PCs, although cytotoxic regimens have demonstrated limited effects with etoposide and platinum combination the most commonly used, however, temozolomide has shown most clinical benefit

    Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids

    No full text
    Background: Pulmonary carcinoids (PCs) are rare tumors. As there is a paucity of randomized studies, this expert consensus document represents an initiative by the European Neuroendocrine Tumor Society to provide guidance on their management. Patients and methods: Bibliographical searches were carried out in PubMed for the terms 'pulmonary neuroendocrine tumors', 'bronchial neuroendocrine tumors', 'bronchial carcinoid tumors', 'pulmonary carcinoid', 'pulmonary typical/atypical carcinoid', and 'pulmonary carcinoid and diagnosis/treatment/epidemiology/prognosis'. A systematic review of the relevant literature was carried out, followed by expert review. Results: PCs are well-differentiated neuroendocrine tumors and include low- and intermediate-grade malignant tumors, i.e. typical (TC) and atypical carcinoid (AC), respectively. Contrast CT scan is the diagnostic gold standard for PCs, but pathology examination is mandatory for their correct classification. Somatostatin receptor imaging may visualize nearly 80% of the primary tumors and is most sensitive for metastatic disease. Plasma chromogranin A can be increased in PCs. Surgery is the treatment of choice for PCs with the aim of removing the tumor and preserving as much lung tissue as possible. Resection of metastases should be considered whenever possible with curative intent. Somatostatin analogs are the first-line treatment of carcinoid syndrome and may be considered as first-line systemic antiproliferative treatment in unresectable PCs, particularly of low-grade TC and AC. Locoregional or radiotargeted therapies should be considered for metastatic disease. Systemic chemotherapy is used for progressive PCs, although cytotoxic regimens have demonstrated limited effects with etoposide and platinum combination the most commonly used, however, temozolomide has shown most clinical benefit. Conclusions: PCs are complex tumors which require a multidisciplinary approach and long-term follow-up

    European experts consensus statement on cystic tumours of the pancreas

    No full text
    Cystic lesions of the pancreas are increasingly recognized. While some lesions show benign behaviour (serous cystic neoplasm), others have an unequivocal malignant potential (mucinous cystic neoplasm, branch- and main duct intraductal papillary mucinous neoplasm and solid pseudo-papillary neoplasm). European expert pancreatologists provide updated recommendations: diagnostic computerized tomography and/or magnetic resonance imaging are indicated in all patients with cystic lesion of the pancreas. Endoscopic ultrasound with cyst fluid analysis may be used but there is no evidence to suggest this as a routine diagnostic method. The role of pancreatoscopy remains to be established. Resection should be considered in all symptomatic lesions, in mucinous cystic neoplasm, main duct intraductal papillary mucinous neoplasm and solid pseudo-papillary neoplasm as well as in branch duct intraductal papillary mucinous neoplasm with mural nodules, dilated main pancreatic duct >6mm and possibly if rapidly increasing in size. An oncological partial resection should be performed in main duct intraductal papillary mucinous neoplasm and in lesions with a suspicion of malignancy, otherwise organ preserving procedures may be considered. Frozen section of the transection margin in intraductal papillary mucinous neoplasm is suggested. Follow up after resection is recommended for intraductal papillary mucinous neoplasm, solid pseudo-papillary neoplasm and invasive cancer
    corecore