3 research outputs found

    SUMOylation Prevents Huntingtin Fibrillization and Localization onto Lipid Membranes

    No full text
    Huntington’s disease (HD), a genetic neurodegenerative disease, is caused by an expanded polyglutamine (polyQ) domain in the first exon of the huntingtin protein (htt). PolyQ expansion destabilizes protein structure, resulting in aggregation into a variety of oligomers, protofibrils, and fibrils. Beyond the polyQ domain, adjacent protein sequences influence the aggregation process. Specifically, the first 17 N-terminal amino acids (Nt17) directly preceding the polyQ domain promote the formation of α-helix-rich oligomers that represent intermediate species associated with fibrillization. Due to its propensity to form an amphipathic α-helix, Nt17 also facilitates lipid binding. Three lysine residues (K6, K9, and K15) within Nt17 can be SUMOylated, which modifies htt’s accumulation and toxicity within cells in a variety of HD models. The impact of SUMOylation on htt aggregation and direct interaction with lipid membranes was investigated. SUMOylation of htt-exon1 inhibited fibril formation while promoting larger, amorphous aggregate species. These amorphous aggregates were SDS soluble but nonetheless exhibited levels of β-sheet structure similar to that of htt-exon1 fibrils. In addition, SUMOylation prevented htt binding, aggregation, and accumulation on model lipid bilayers comprised of total brain lipid extract. Collectively, these observations demonstrate that SUMOylation promotes a distinct htt aggregation pathway that may affect htt toxicity

    Oxidation Promotes Distinct Huntingtin Aggregates in the Presence and Absence of Membranes

    No full text
    Expansion of a polyglutamine (polyQ) domain within the first exon of the huntingtin (htt) protein is the underlying cause of Huntington’s disease, a genetic neurodegenerative disorder. PolyQ expansion triggers htt aggregation into oligomers, fibrils, and inclusions. The 17 N-terminal amino acids (Nt17) of htt-exon1, which directly precede the polyQ domain enhances polyQ fibrillization and functions as a lipid-binding domain. A variety of post-translational modifications occur within Nt17, including oxidation of two methionine residues. Here, the impact of oxidation within Nt17 on htt aggregation both in the presence and absence of lipid membranes was investigated. Treatment with hydrogen peroxide (H2O2) reduced fibril formation in a dose-dependent manner, resulting in shorter fibrils and an increased oligomer population. With excessive H2O2 treatments, fibrils developed a unique morphological feature around their periphery. In the presence of total brain lipid vesicles, H2O2 impacted fibrillization in a similar manner. That is, oligomerization was promoted at the expense of fibril elongation. The interaction of unoxidized and oxidized htt with supported lipid bilayers was directly observed using in situ atomic force microscopy. Without oxidation, granular htt aggregates developed on the bilayer surface. However, in the presence of H2O2, distinct plateau-like regions initially developed on the bilayer surface that gave way to rougher patches containing granular aggregates. Collectively, these observations suggest that oxidation of methionine residues within Nt17 plays a crucial role in both the aggregation of htt and its ability to interact with lipid surfaces

    Lipid Membranes Influence the Ability of Small Molecules To Inhibit Huntingtin Fibrillization

    No full text
    Several diseases, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (HD), are associated with specific proteins aggregating and depositing within tissues and/or cellular compartments. The aggregation of these proteins is characterized by the formation of extended, β-sheet rich fibrils, termed amyloid. In addition, a variety of other aggregate species also form, including oligomers and protofibrils. Specifically, HD is caused by the aggregation of the huntingtin (htt) protein that contains an expanded polyglutamine domain. Due to the link between protein aggregation and disease, small molecule aggregation inhibitors have been pursued as potential therapeutic agents. Two such small molecules are epigallocatechin 3-gallate (EGCG) and curcumin, both of which inhibit the fibril formation of several amyloid-forming proteins. However, amyloid formation is a complex process that is strongly influenced by the protein’s environment, leading to distinct aggregation pathways. Thus, changes in the protein’s environment may alter the effectiveness of aggregation inhibitors. A well-known modulator of amyloid formation is lipid membranes. Here, we investigated if the presence of lipid vesicles altered the ability of EGCG or curcumin to modulate htt aggregation and influence the interaction of htt with lipid membranes. The presence of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine or total brain lipid extract vesicles prevented the curcumin from inhibiting htt fibril formation. In contrast, EGCG’s inhibition of htt fibril formation persisted in the presence of lipids. Collectively, these results highlight the complexity of htt aggregation and demonstrate that the presence of lipid membranes is a key modifier of the ability of small molecules to inhibit htt fibril formation
    corecore