578 research outputs found

    Is the GSI anomaly due to neutrino oscillations? - A real time perspective -

    Full text link
    We study a model for the "GSI anomaly" in which we obtain the time evolution of the population of parent and daughter particles directly in real time, considering explicitly the quantum entanglement between the daughter particle and neutrino mass eigenstates in the two-body decay. We confirm that the decay rate of the parent particle and the growth rate of the daughter particle do \emph{not} feature a time modulation from interference of neutrino mass eigenstates. The lack of interference is a consequence of the orthogonality of the mass eigenstates. This result also follows from the density matrix obtained by tracing out the unobserved neutrino states. We confirm this result by providing a complementary explanation based on Cutkosky rules applied to the Feynman diagram that describes the self-energy of the parent particle.Comment: 11 page

    Possible experimental signature of octupole correlations in the 02+^+_2 states of the actinides

    Full text link
    JπJ^{\pi}= 0+^+ states have been investigated in the actinide nucleus 240{}^{240}Pu up to an excitation energy of 3 MeV with a high-resolution (p,t) experiment at EpE_{p}= 24 MeV. To test the recently proposed JπJ^{\pi}= 02+^+_2 double-octupole structure, the phenomenological approach of the spdf-interacting boson model has been chosen. In addition, the total 0+^+ strength distribution and the 0+0^+ strength fragmentation have been compared to the model predictions as well as to the previously studied (p,t) reactions in the actinides. The results suggest that the structure of the 02+^+_2 states in the actinides might be more complex than the usually discussed pairing isomers. Instead, the octupole degree of freedom might contribute significantly. The signature of two close-lying 0+^+ states below the 2-quasiparticle energy is presented as a possible manifestation of strong octupole correlations in the structure of the 02+^+_2 states in the actinides.Comment: 6 pages, 5 figures, published in Phys. Rev. C 88, 041303(R) (2013

    Search for supernova-produced 60Fe in a marine sediment

    Full text link
    An 60Fe peak in a deep-sea FeMn crust has been interpreted as due to the signature left by the ejecta of a supernova explosion close to the solar system 2.8 +/- 0.4 Myr ago [Knie et al., Phys. Rev. Lett. 93, 171103 (2004)]. To confirm this interpretation with better time resolution and obtain a more direct flux estimate, we measured 60Fe concentrations along a dated marine sediment. We find no 60Fe peak at the expected level from 1.7 to 3.2 Myr ago. However, applying the same chemistry used for the sediment, we confirm the 60Fe signal in the FeMn crust. The cause of the discrepancy is discussed.Comment: 15 pages, 5 figures, submitted to PR

    Spectroscopy of 19^{19}Ne for the thermonuclear 15^{15}O(α,γ\alpha,\gamma)19^{19}Ne and 18^{18}F(p,αp,\alpha)15^{15}O reaction rates

    Full text link
    Uncertainties in the thermonuclear rates of the 15^{15}O(α,γ\alpha,\gamma)19^{19}Ne and 18^{18}F(p,αp,\alpha)15^{15}O reactions affect model predictions of light curves from type I X-ray bursts and the amount of the observable radioisotope 18^{18}F produced in classical novae, respectively. To address these uncertainties, we have studied the nuclear structure of 19^{19}Ne over Ex=4.05.1E_{x} = 4.0 - 5.1 MeV and 6.17.36.1 - 7.3 MeV using the 19^{19}F(3^{3}He,t)19^{19}Ne reaction. We find the JπJ^{\pi} values of the 4.14 and 4.20 MeV levels to be consistent with 9/29/2^{-} and 7/27/2^{-} respectively, in contrast to previous assumptions. We confirm the recently observed triplet of states around 6.4 MeV, and find evidence that the state at 6.29 MeV, just below the proton threshold, is either broad or a doublet. Our data also suggest that predicted but yet unobserved levels may exist near the 6.86 MeV state. Higher resolution experiments are urgently needed to further clarify the structure of 19^{19}Ne around the proton threshold before a reliable 18^{18}F(p,αp,\alpha)15^{15}O rate for nova models can be determined.Comment: 5 pages, 3 figures, Phys. Rev. C (in press

    Q-Value for the Fermi Beta-Decay of 46V

    Full text link
    By comparing the Q-values for the 46Ti(3He,t)46V and 47Ti(3He,t)47}V reactions to the isobaric analog states the Q-value for the superallowed Fermi-decay of 46V has been determined as Q_{EC}(46V)=(7052.11+/-0.27) keV. The result is compatible with the values from two recent direct mass measurements but is at variance with the previously most precise reaction Q-value. As additional input quantity we have determined the neutron separation energy S_n(47Ti)=(8880.51+/-0.25) keV

    Transmission resonance spectroscopy in the third minimum of 232Pa

    Full text link
    The fission probability of 232Pa was measured as a function of the excitation energy in order to search for hyperdeformed (HD) transmission resonances using the (d,pf) transfer reaction on a radioactive 231Pa target. The experiment was performed at the Tandem accelerator of the Maier-Leibnitz Laboratory (MLL) at Garching using the 231Pa(d,pf) reaction at a bombarding energy of E=12 MeV and with an energy resolution of dE=5.5 keV. Two groups of transmission resonances have been observed at excitation energies of E=5.7 and 5.9 MeV. The fine structure of the resonance group at E=5.7 MeV could be interpreted as overlapping rotational bands with a rotational parameter characteristic to a HD nuclear shape. The fission barrier parameters of 232Pa have been determined by fitting TALYS 1.2 nuclear reaction code calculations to the overall structure of the fission probability. From the average level spacing of the J=4 states, the excitation energy of the ground state of the 3rd minimum has been deduced to be E(III)=5.05 MeV.Comment: 6 pages, 8 figure

    An experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double {\beta} decay in 100Mo

    Get PDF
    The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double {\beta} decay of 100Mo have been determined by measuring cross sections in (d,p), (p,d), (3He,{\alpha}) and (3He,d) reactions on 98,100Mo and 100,102Ru targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double {\beta} decay of the 100Mo system.Comment: 18 pages, 13 figures, 37 pages of supplemental informatio
    corecore