1,037 research outputs found
Complex Networks from Classical to Quantum
Recent progress in applying complex network theory to problems in quantum
information has resulted in a beneficial crossover. Complex network methods
have successfully been applied to transport and entanglement models while
information physics is setting the stage for a theory of complex systems with
quantum information-inspired methods. Novel quantum induced effects have been
predicted in random graphs---where edges represent entangled links---and
quantum computer algorithms have been proposed to offer enhancement for several
network problems. Here we review the results at the cutting edge, pinpointing
the similarities and the differences found at the intersection of these two
fields.Comment: 12 pages, 4 figures, REVTeX 4-1, accepted versio
Regular subalgebras and nilpotent orbits of real graded Lie algebras
For a semisimple Lie algebra over the complex numbers, Dynkin (1952)
developed an algorithm to classify the regular semisimple subalgebras, up to
conjugacy by the inner automorphism group. For a graded semisimple Lie algebra
over the complex numbers, Vinberg (1979) showed that a classification of a
certain type of regular subalgebras (called carrier algebras) yields a
classification of the nilpotent orbits in a homogeneous component of that Lie
algebra. Here we consider these problems for (graded) semisimple Lie algebras
over the real numbers. First, we describe an algorithm to classify the regular
semisimple subalgebras of a real semisimple Lie algebra. This also yields an
algorithm for listing, up to conjugacy, the carrier algebras in a real graded
semisimple real algebra. We then discuss what needs to be done to obtain a
classification of the nilpotent orbits from that; such classifications have
applications in differential geometry and theoretical physics. Our algorithms
are implemented in the language of the computer algebra system GAP, using our
package CoReLG; we report on example computations
Computing generators of the unit group of an integral abelian group ring
We describe an algorithm for obtaining generators of the unit group of the
integral group ring ZG of a finite abelian group G. We used our implementation
in Magma of this algorithm to compute the unit groups of ZG for G of order up
to 110. In particular for those cases we obtained the index of the group of
Hoechsmann units in the full unit group. At the end of the paper we describe an
algorithm for the more general problem of finding generators of an arithmetic
group corresponding to a diagonalizable algebraic group
Ground State Spin Logic
Designing and optimizing cost functions and energy landscapes is a problem
encountered in many fields of science and engineering. These landscapes and
cost functions can be embedded and annealed in experimentally controllable spin
Hamiltonians. Using an approach based on group theory and symmetries, we
examine the embedding of Boolean logic gates into the ground state subspace of
such spin systems. We describe parameterized families of diagonal Hamiltonians
and symmetry operations which preserve the ground state subspace encoding the
truth tables of Boolean formulas. The ground state embeddings of adder circuits
are used to illustrate how gates are combined and simplified using symmetry.
Our work is relevant for experimental demonstrations of ground state embeddings
found in both classical optimization as well as adiabatic quantum optimization.Comment: 6 pages + 3 pages appendix, 7 figures, 1 tabl
Entrograms and coarse graining of dynamics on complex networks
Using an information theoretic point of view, we investigate how a dynamics
acting on a network can be coarse grained through the use of graph partitions.
Specifically, we are interested in how aggregating the state space of a Markov
process according to a partition impacts on the thus obtained lower-dimensional
dynamics. We highlight that for a dynamics on a particular graph there may be
multiple coarse grained descriptions that capture different, incomparable
features of the original process. For instance, a coarse graining induced by
one partition may be commensurate with a time-scale separation in the dynamics,
while another coarse graining may correspond to a different lower-dimensional
dynamics that preserves the Markov property of the original process. Taking
inspiration from the literature of Computational Mechanics, we find that a
convenient tool to summarise and visualise such dynamical properties of a
coarse grained model (partition) is the entrogram. The entrogram gathers
certain information-theoretic measures, which quantify how information flows
across time steps. These information theoretic quantities include the entropy
rate, as well as a measure for the memory contained in the process, i.e., how
well the dynamics can be approximated by a first order Markov process. We use
the entrogram to investigate how specific macro-scale connection patterns in
the state-space transition graph of the original dynamics result in desirable
properties of coarse grained descriptions. We thereby provide a fresh
perspective on the interplay between structure and dynamics in networks, and
the process of partitioning from an information theoretic perspective. We focus
on networks that may be approximated by both a core-periphery or a clustered
organization, and highlight that each of these coarse grained descriptions can
capture different aspects of a Markov process acting on the network.Comment: 17 pages, 6 figue
Visualization of dynamic multidimensional and hierarchical datasets
When it comes to tools and techniques designed to help understanding complex abstract data, visualization methods play a prominent role. They enable human operators to lever age their pattern finding, outlier detection, and questioning abilities to visually reason about a given dataset. Many methods exist that create suitable and useful visual represen tations of static abstract, non-spatial, data. However, for temporal abstract, non-spatial, datasets, in which the data changes and evolves through time, far fewer visualization tech niques exist. This thesis focuses on the particular cases of temporal hierarchical data representation via dynamic treemaps, and temporal high-dimensional data visualization via dynamic projec tions. We tackle the joint question of how to extend projections and treemaps to stably, accurately, and scalably handle temporal multivariate and hierarchical data. The literature for static visualization techniques is rich and the state-of-the-art methods have proven to be valuable tools in data analysis. Their temporal/dynamic counterparts, however, are not as well studied, and, until recently, there were few hierarchical and high-dimensional methods that explicitly took into consideration the temporal aspect of the data. In addi tion, there are few or no metrics to assess the quality of these temporal mappings, and even fewer comprehensive benchmarks to compare these methods. This thesis addresses the abovementioned shortcomings. For both dynamic treemaps and dynamic projections, we propose ways to accurately measure temporal stability; we eval uate existing methods considering the tradeoff between stability and visual quality; and we propose new methods that strike a better balance between stability and visual quality than existing state-of-the-art techniques. We demonstrate our methods with a wide range of real-world data, including an application of our new dynamic projection methods to support the analysis and classification of hyperkinetic movement disorder data.Quando se trata de ferramentas e técnicas projetadas para ajudar na compreensão dados abstratos complexos, métodos de visualização desempenham um papel proeminente. Eles permitem que os operadores humanos alavanquem suas habilidades de descoberta de padrões, detecção de valores discrepantes, e questionamento visual para a raciocinar sobre um determinado conjunto de dados. Existem muitos métodos que criam representações visuais adequadas e úteis de para dados estáticos, abstratos, e não-espaciais. No entanto, para dados temporais, abstratos, e não-espaciais, isto é, dados que mudam e evoluem no tempo, existem poucas técnicas apropriadas. Esta tese concentra-se nos casos específicos de representação temporal de dados hierárquicos por meio de treemaps dinâmicos, e visualização temporal de dados de alta dimen sionalidade via projeções dinâmicas. Nós abordar a questão conjunta de como estender projeções e treemaps de forma estável, precisa e escalável para lidar com conjuntos de dados hierárquico-temporais e multivariado-temporais. Em ambos os casos, a literatura para técnicas estáticas é rica e os métodos estado da arte provam ser ferramentas valiosas em análise de dados. Suas contrapartes temporais/dinâmicas, no entanto, não são tão bem estudadas e, até recentemente, existiam poucos métodos hierárquicos e de alta dimensão que explicitamente levavam em consideração o aspecto temporal dos dados. Além disso, existiam poucas métricas para avaliar a qualidade desses mapeamentos visuais temporais, e ainda menos benchmarks abrangentes para comparação esses métodos. Esta tese aborda as deficiências acima mencionadas para treemaps dinâmicos e projeções dinâmicas. Propomos maneiras de medir com precisão a estabilidade temporal; avalia mos os métodos existentes, considerando o compromisso entre estabilidade e qualidade visual; e propomos novos métodos que atingem um melhor equilíbrio entre estabilidade e a qualidade visual do que as técnicas estado da arte atuais. Demonstramos nossos mé todos com uma ampla gama de dados do mundo real, incluindo uma aplicação de nossos novos métodos de projeção dinâmica para apoiar a análise e classificação dos dados de transtorno de movimentos
Analysis of the Equilibrium and Kinetics of the Ankyrin Repeat Protein Myotrophin
We apply the Wako-Saito-Munoz-Eaton model to the study of Myotrophin, a small
ankyrin repeat protein, whose folding equilibrium and kinetics have been
recently characterized experimentally. The model, which is a native-centric
with binary variables, provides a finer microscopic detail than the Ising
model, that has been recently applied to some different repeat proteins, while
being still amenable for an exact solution. In partial agreement with the
experiments, our results reveal a weakly three-state equilibrium and a
two-state-like kinetics of the wild type protein despite the presence of a
non-trivial free-energy profile. These features appear to be related to a
careful "design" of the free-energy landscape, so that mutations can alter this
picture, stabilizing some intermediates and changing the position of the
rate-limiting step. Also the experimental findings of two alternative pathways,
an N-terminal and a C-terminal one, are qualitatively confirmed, even if the
variations in the rates upon the experimental mutations cannot be
quantitatively reproduced. Interestingly, folding and unfolding pathway appear
to be different, even if closely related: a property that is not generally
considered in the phenomenological interpretation of the experimental data.Comment: 27 pages, 7 figure
Visualization of dynamic multidimensional and hierarchical datasets
When it comes to tools and techniques designed to help understanding complex abstract data, visualization methods play a prominent role. They enable human operators to lever age their pattern finding, outlier detection, and questioning abilities to visually reason about a given dataset. Many methods exist that create suitable and useful visual represen tations of static abstract, non-spatial, data. However, for temporal abstract, non-spatial, datasets, in which the data changes and evolves through time, far fewer visualization tech niques exist. This thesis focuses on the particular cases of temporal hierarchical data representation via dynamic treemaps, and temporal high-dimensional data visualization via dynamic projec tions. We tackle the joint question of how to extend projections and treemaps to stably, accurately, and scalably handle temporal multivariate and hierarchical data. The literature for static visualization techniques is rich and the state-of-the-art methods have proven to be valuable tools in data analysis. Their temporal/dynamic counterparts, however, are not as well studied, and, until recently, there were few hierarchical and high-dimensional methods that explicitly took into consideration the temporal aspect of the data. In addi tion, there are few or no metrics to assess the quality of these temporal mappings, and even fewer comprehensive benchmarks to compare these methods. This thesis addresses the abovementioned shortcomings. For both dynamic treemaps and dynamic projections, we propose ways to accurately measure temporal stability; we eval uate existing methods considering the tradeoff between stability and visual quality; and we propose new methods that strike a better balance between stability and visual quality than existing state-of-the-art techniques. We demonstrate our methods with a wide range of real-world data, including an application of our new dynamic projection methods to support the analysis and classification of hyperkinetic movement disorder data.Quando se trata de ferramentas e técnicas projetadas para ajudar na compreensão dados abstratos complexos, métodos de visualização desempenham um papel proeminente. Eles permitem que os operadores humanos alavanquem suas habilidades de descoberta de padrões, detecção de valores discrepantes, e questionamento visual para a raciocinar sobre um determinado conjunto de dados. Existem muitos métodos que criam representações visuais adequadas e úteis de para dados estáticos, abstratos, e não-espaciais. No entanto, para dados temporais, abstratos, e não-espaciais, isto é, dados que mudam e evoluem no tempo, existem poucas técnicas apropriadas. Esta tese concentra-se nos casos específicos de representação temporal de dados hierárquicos por meio de treemaps dinâmicos, e visualização temporal de dados de alta dimen sionalidade via projeções dinâmicas. Nós abordar a questão conjunta de como estender projeções e treemaps de forma estável, precisa e escalável para lidar com conjuntos de dados hierárquico-temporais e multivariado-temporais. Em ambos os casos, a literatura para técnicas estáticas é rica e os métodos estado da arte provam ser ferramentas valiosas em análise de dados. Suas contrapartes temporais/dinâmicas, no entanto, não são tão bem estudadas e, até recentemente, existiam poucos métodos hierárquicos e de alta dimensão que explicitamente levavam em consideração o aspecto temporal dos dados. Além disso, existiam poucas métricas para avaliar a qualidade desses mapeamentos visuais temporais, e ainda menos benchmarks abrangentes para comparação esses métodos. Esta tese aborda as deficiências acima mencionadas para treemaps dinâmicos e projeções dinâmicas. Propomos maneiras de medir com precisão a estabilidade temporal; avalia mos os métodos existentes, considerando o compromisso entre estabilidade e qualidade visual; e propomos novos métodos que atingem um melhor equilíbrio entre estabilidade e a qualidade visual do que as técnicas estado da arte atuais. Demonstramos nossos mé todos com uma ampla gama de dados do mundo real, incluindo uma aplicação de nossos novos métodos de projeção dinâmica para apoiar a análise e classificação dos dados de transtorno de movimentos
Quantum Transport Enhancement by Time-Reversal Symmetry Breaking
Quantum mechanics still provides new unexpected effects when considering the
transport of energy and information. Models of continuous time quantum walks,
which implicitly use time-reversal symmetric Hamiltonians, have been intensely
used to investigate the effectiveness of transport. Here we show how breaking
time-reversal symmetry of the unitary dynamics in this model can enable
directional control, enhancement, and suppression of quantum transport.
Examples ranging from exciton transport to complex networks are presented. This
opens new prospects for more efficient methods to transport energy and
information.Comment: 6+5 page
- …