7,735,815 research outputs found
Braneworlds in Horndeski gravity
In this paper we address the issue of finding braneworld solutions in a
five-dimensional Horndeski gravity and the mechanism of gravity localization
into the brane via `almost massless modes' for suitable values of the Horndeski
parameters. We compute the corrections to the Newtonian potential and discuss
the limit where four-dimensional gravity is recovered.Comment: 14 pages, 6 figure
Massive conformal gravity
In this article we construct a massive theory of gravity that is invariant
under conformal transformations. The massive action of the theory depend on the
metric tensor and a scalar field, which are considered as the only field
variables. We find the vacuum field equations of the theory and the solution of
its Newtonian limit.Comment: v2: 6 pages, some missing terms were added in the field equation (7).
v3: 9 pages, several improvements to match the published versio
Periodic solutions of a many-rotator problem in the plane. II. Analysis of various motions
Various solutions are displayed and analyzed (both analytically and
numerically) of arecently-introduced many-body problem in the plane which
includes both integrable and nonintegrable cases (depending on the values of
the coupling constants); in particular the origin of certain periodic behaviors
is explained. The light thereby shone on the connection among
\textit{integrability} and \textit{analyticity} in (complex) time, as well as
on the emergence of a \textit{chaotic} behavior (in the guise of a sensitive
dependance on the initial data) not associated with any local exponential
divergence of trajectories in phase space, might illuminate interesting
phenomena of more general validity than for the particular model considered
herein.Comment: Published by JNMP at http://www.sm.luth.se/math/JNMP
Fermion Systems in Discrete Space-Time
Fermion systems in discrete space-time are introduced as a model for physics
on the Planck scale. We set up a variational principle which describes a
non-local interaction of all fermions. This variational principle is symmetric
under permutations of the discrete space-time points. We explain how for
minimizers of the variational principle, the fermions spontaneously break this
permutation symmetry and induce on space-time a discrete causal structure.Comment: 8 pages, LaTeX, few typos corrected (published version
- ā¦