1,467 research outputs found
Three-dimensional simulations of the orientation and structure of reconnection X-lines
This work employs Hall magnetohydrodynamic (MHD) simulations to study the
X-lines formed during the reconnection of magnetic fields with differing
strengths and orientations embedded in plasmas of differing densities. Although
random initial perturbations trigger the growth of X-lines with many
orientations, at late time a few robust X-lines sharing an orientation
reasonably consistent with the direction that maximizes the outflow speed, as
predicted by Swisdak and Drake [Geophys. Res. Lett., 34, L11106, (2007)],
dominate the system. The existence of reconnection in the geometry examined
here contradicts the suggestion of Sonnerup [J. Geophys. Res., 79, 1546 (1974)]
that reconnection occurs in a plane normal to the equilibrium current. At late
time the growth of the X-lines stagnates, leaving them shorter than the
simulation domain.Comment: Accepted by Physics of Plasma
New Insights into Cosmic Ray induced Biosignature Chemistry in Earth-like Atmospheres
With the recent discoveries of terrestrial planets around active M-dwarfs,
destruction processes masking the possible presence of life are receiving
increased attention in the exoplanet community. We investigate potential
biosignatures of planets having Earth-like (N-O) atmospheres orbiting
in the habitable zone of the M-dwarf star AD Leo. These are bombarded by high
energetic particles which can create showers of secondary particles at the
surface. We apply our cloud-free 1D climate-chemistry model to study the
influence of key particle shower parameters and chemical efficiencies of NOx
and HOx production from cosmic rays. We determine the effect of stellar
radiation and cosmic rays upon atmospheric composition, temperature, and
spectral appearance. Despite strong stratospheric O destruction by cosmic
rays, smog O can significantly build up in the lower atmosphere of our
modeled planet around AD Leo related to low stellar UVB. NO abundances
decrease with increasing flaring energies but a sink reaction for NO with
excited oxygen becomes weaker, stabilizing its abundance. CH is removed
mainly by Cl in the upper atmosphere for strong flaring cases and not via
hydroxyl as is otherwise usually the case. Cosmic rays weaken the role of
CH in heating the middle atmosphere so that HO absorption becomes more
important. We additionally underline the importance of HNO as a possible
marker for strong stellar particle showers. In a nutshell, uncertainty in NOx
and HOx production from cosmic rays significantly influences biosignature
abundances and spectral appearance.Comment: Manuscript version after addressing all referee comments. Published
in Ap
Interaction-induced current-reversals in driven lattices
We demonstrate that long-range interactions can cause, as time evolves,
consecutive reversals of directed currents for dilute ensembles of particles in
driven lattices. These current-reversals are based on a general mechanism which
leads to an interaction-induced accumulation of particles in the regular
regions of the underlying single-particle phase space and to a synchronized
single-particle motion as well as an enhanced efficiency of Hamiltonian
ratchets.Comment: 5 pages, 5 figure
Consistently Simulating a Wide Range of Atmospheric Scenarios for K2-18b with a Flexible Radiative Transfer Module
The atmospheres of small, potentially rocky exoplanets are expected to cover
a diverse range in composition and mass. Studying such objects therefore
requires flexible and wide-ranging modeling capabilities. We present in this
work the essential development steps that lead to our flexible radiative
transfer module, REDFOX, and validate REDFOX for the Solar system planets
Earth, Venus and Mars, as well as for steam atmospheres. REDFOX is a
k-distribution model using the correlated-k approach with random overlap method
for the calculation of opacities used in the -two-stream approximation
for radiative transfer. Opacity contributions from Rayleigh scattering, UV /
visible cross sections and continua can be added selectively. With the improved
capabilities of our new model, we calculate various atmospheric scenarios for
K2-18b, a super-Earth / sub-Neptune with 8 M orbiting in the
temperate zone around an M-star, with recently observed HO spectral
features in the infrared. We model Earth-like, Venus-like, as well as H-He
primary atmospheres of different Solar metallicity and show resulting climates
and spectral characteristics, compared to observed data. Our results suggest
that K2-18b has an H-He atmosphere with limited amounts of HO and
CH. Results do not support the possibility of K2-18b having a water
reservoir directly exposed to the atmosphere, which would reduce atmospheric
scale heights, hence too the amplitudes of spectral features inconsistent with
the observations. We also performed tests for H-He atmospheres up to 50
times Solar metallicity, all compatible with the observations.Comment: 28 pages, 13 figures, accepted for publication in Ap
The Elusive Active Nucleus of NGC 4945
We present new HST NICMOS observations of NGC 4945, a starburst galaxy
hosting a highly obscured active nucleus that is one of the brightest
extragalactic sources at 100 keV. The HST data are complemented with ground
based [FeII] line and mid--IR observations. A 100pc-scale starburst ring is
detected in Pa alpha, while H_2 traces the walls of a super bubble opened by
supernova-driven winds. The conically shaped cavity is particularly prominent
in Pa alpha equivalent width and in the Pa alpha/H_2 ratio. Continuum images
are heavily affected by dust extinction and the nucleus of the galaxy is
located in a highly reddened region with an elongated, disk-like morphology. No
manifestation of the active nucleus is found, neither a strong point source nor
dilution in CO stellar features, which are expected tracers of AGN activity.
Even if no AGN traces are detected in the near-IR, with the currently available
data it is still not possible to establish whether the bolometric luminosity of
the object is powered by the AGN or by the starburst: we demonstrate that the
two scenarios constitute equally viable alternatives. However, the absence of
any signature other than in the hard X-rays implies that, in both scenarios,
the AGN is non-standard: if it dominates, it must be obscured in all
directions, conversely, if the starburst dominates, the AGN must lack UV
photons with respect to X-rays. An important conclusion is that powerful AGNs
can be hidden even at mid-infrared wavelengths and, therefore, the nature of
luminous dusty galaxies cannot be always characterized by long-wavelength data
alone but must be complemented with sensitive hard X-ray observations.Comment: Accepted for publication in A&A, high quality color pictures
available at http://www.arcetri.astro.it/~marconi/colpic.htm
Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs
We investigate the detectability of atmospheric spectral features of
Earth-like planets in the habitable zone (HZ) around M dwarfs with the future
James Webb Space Telescope (JWST). We use a coupled 1D climate-chemistry-model
to simulate the influence of a range of observed and modelled M-dwarf spectra
on Earth-like planets. The simulated atmospheres served as input for the
calculation of the transmission spectra of the hypothetical planets, using a
line-by-line spectral radiative transfer model. To investigate the
spectroscopic detectability of absorption bands with JWST we further developed
a signal-to-noise ratio (S/N) model and applied it to our transmission spectra.
High abundances of CH and HO in the atmosphere of Earth-like planets
around mid to late M dwarfs increase the detectability of the corresponding
spectral features compared to early M-dwarf planets. Increased temperatures in
the middle atmosphere of mid- to late-type M-dwarf planets expand the
atmosphere and further increase the detectability of absorption bands. To
detect CH, HO, and CO in the atmosphere of an Earth-like planet
around a mid to late M dwarf observing only one transit with JWST could be
enough up to a distance of 4 pc and less than ten transits up to a distance of
10 pc. As a consequence of saturation limits of JWST and less pronounced
absorption bands, the detection of spectral features of hypothetical Earth-like
planets around most early M dwarfs would require more than ten transits. We
identify 276 existing M dwarfs (including GJ 1132, TRAPPIST-1, GJ 1214, and LHS
1140) around which atmospheric absorption features of hypothetical Earth-like
planets could be detected by co-adding just a few transits. We show that using
transmission spectroscopy, JWST could provide enough precision to be able to
partly characterise the atmosphere of Earth-like TESS planets around mid to
late M dwarfs.Comment: 18 pages, 10 figure
Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics
Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received considerable attention from the research community. Most of these attempts target the production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis, which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to carbon monoxide driven solely by simulated sunlight using water as the electron source. Employing series-connected perovskite photovoltaics and high-performance catalyst electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product, an efficiency exceeding 7% is observed. Furthermore, this study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process
Near infrared nadir retrieval of vertical column densities: methodology and application to SCIAMACHY
Nadir observations with the shortwave infrared channels of SCIAMACHY on-board the ENVISAT satellite can be used to derive information on atmospheric gases such as CO, CH<sub>4</sub>, N<sub>2</sub>O, CO<sub>2</sub>, and H<sub>2</sub>O. For the operational level 1b-2 processing of SCIAMACHY data, a new retrieval code BIRRA (Beer InfraRed Retrieval Algorithm) has been developed. BIRRA performs a nonlinear or separable least squares fit (with bound constraints optional) of the measured radiance, where molecular concentration vertical profiles are scaled to fit the observed data. Here we present the forward modeling (radiative transfer) and inversion (least squares optimization) fundamentals of the code along with the further processing steps required to generate higher level products such as global distributions and time series. Moreover, various aspects of level 1 (observed spectra) and auxiliary input data relevant for successful retrievals are discussed. BIRRA is currently used for operational analysis of carbon monoxide vertical column densities from SCIAMACHY channel 8 observations, and is being prepared for methane retrievals using channel 6 spectra. A set of representative CO retrievals and first CH<sub>4</sub> results are presented to demonstrate BIRRA's capabilities
Understanding Perceptions of Child Maltreatment Risk: A Qualitative Study of Early Head Start Home Visitors
Infants and toddlers enrolled in Early Head Start are at increased risk for child maltreatment. Within Early Head Start, home visitors are in a unique position to identify the families most likely to experience maltreatment by identifying characteristics and behaviors of children, caregivers, families, and environments that are of concern. However, research has demonstrated that home visitors are often ill-equipped to identify and address risk factors such as parental mental health concerns, substance abuse, and domestic violence. Further, little is known about how home visitors understand and perceive risk for maltreatment and identify vulnerable families. The study sought to identify how Early Head Start home visitors understand maltreatment, perceive risk for maltreatment, and work with families identified as at-risk. Qualitative interviews exploring identification of risk for maltreatment were conducted with fourteen Early Head Start home visitors and supervisors. Results indicate variable understanding of maltreatment. Home visitors identified numerous factors they believe suggest elevated risk for maltreatment and described variable approaches to working with families at risk. Findings provide rich information about the role that home visitors play in maltreatment prevention within Early Head Start. Directions for effectively training home visitors to engage families and deliver program and community-based services in a manner that reduces risk for and prevents maltreatment are discussed
- …