167 research outputs found

### g = 2 as a Gauge Condition

Charged matter spin-1 fields enjoy a nonelectromagnetic gauge symmetry when
interacting with vacuum electromagnetism, provided their gyromagnetic ratio is
2.Comment: 5 pages, REVTeX, submitted to Phys Rev D Brief Report

### Lorentz Symmetry and the Internal Structure of the Nucleon

To investigate the internal structure of the nucleon, it is useful to
introduce quantities that do not transform properly under Lorentz symmetry,
such as the four-momentum of the quarks in the nucleon, the amount of the
nucleon spin contributed by quark spin, etc. In this paper, we discuss to what
extent these quantities do provide Lorentz-invariant descriptions of the
nucleon structure.Comment: 6 pages, no figur

### Correlation functions, Bell's inequalities and the fundamental conservation laws

I derive the correlation function for a general theory of two-valued spin
variables that satisfy the fundamental conservation law of angular momentum.
The unique theory-independent correlation function is identical to the quantum
mechanical correlation function. I prove that any theory of correlations of
such discrete variables satisfying the fundamental conservation law of angular
momentum violates the Bell's inequalities. Taken together with the Bell's
theorem, this result has far reaching implications. No theory satisfying
Einstein locality, reality in the EPR-Bell sense, and the validity of the
conservation law can be constructed. Therefore, all local hidden variable
theories are incompatible with fundamental symmetries and conservation laws.
Bell's inequalities can be obeyed only by violating a conservation law. The
implications for experiments on Bell's inequalities are obvious. The result
provides new insight regarding entanglement, and its measures.Comment: LaTeX, 12pt, 11 pages, 2 figure

### The electromagnetic energy-momentum tensor

We clarify the relation between canonical and metric energy-momentum tensors.
In particular, we show that a natural definition arises from Noether's Theorem
which directly leads to a symmetric and gauge invariant tensor for
electromagnetic field theories on an arbitrary space-time of any dimension

### Dynamics of a self gravitating light-like matter shell: a gauge-invariant Lagrangian and Hamiltonian description

A complete Lagrangian and Hamiltonian description of the theory of
self-gravitating light-like matter shells is given in terms of
gauge-independent geometric quantities. For this purpose the notion of an
extrinsic curvature for a null-like hypersurface is discussed and the
corresponding Gauss-Codazzi equations are proved. These equations imply Bianchi
identities for spacetimes with null-like, singular curvature. Energy-momentum
tensor-density of a light-like matter shell is unambiguously defined in terms
of an invariant matter Lagrangian density. Noether identity and
Belinfante-Rosenfeld theorem for such a tensor-density are proved. Finally, the
Hamiltonian dynamics of the interacting system: ``gravity + matter'' is derived
from the total Lagrangian, the latter being an invariant scalar density.Comment: 20 pages, RevTeX4, no figure

### Common Causes and The Direction of Causation

Is the common cause principle merely one of a set of useful heuristics for discovering causal relations, or is it rather a piece of heavy duty metaphysics, capable of grounding the direction of causation itself? Since the principle was introduced in Reichenbachâs groundbreaking work The Direction of Time (1956), there have been a series of attempts to pursue the latter programâto take the probabilistic relationships constitutive of the principle of the common cause and use them to ground the direction of causation. These attempts have not all explicitly appealed to the principle as originally formulated; it has also appeared in the guise of independence conditions, counterfactual overdetermination, and, in the causal modelling literature, as the causal markov condition. In this paper, I identify a set of difficulties for grounding the asymmetry of causation on the principle and its descendents. The first difficulty, concerning what I call the vertical placement of causation, consists of a tension between considerations that drive towards the macroscopic scale, and considerations that drive towards the microscopic scaleâthe worry is that these considerations cannot both be comfortably accommodated. The second difficulty consists of a novel potential counterexample to the principle based on the familiar Einstein Podolsky Rosen (EPR) cases in quantum mechanics

### A note on "symmetric" vielbeins in bimetric, massive, perturbative and non perturbative gravities

We consider a manifold endowed with two different vielbeins $E^{A}{}_{\mu}$
and $L^{A}{}_{\mu}$ corresponding to two different metrics $g_{\mu\nu}$ and
$f_{\mu\nu}$. Such a situation arises generically in bimetric or massive
gravity (including the recently discussed version of de Rham, Gabadadze and
Tolley), as well as in perturbative quantum gravity where one vielbein
parametrizes the background space-time and the other the dynamical degrees of
freedom. We determine the conditions under which the relation $g^{\mu\nu}
E^{A}{}_{\mu} L^{B}{}_{\nu} = g^{\mu\nu} E^{B}{}_{\mu} L^{A}{}_{\nu}$ can be
imposed (or the "Deser-van Nieuwenhuizen" gauge chosen). We clarify and correct
various statements which have been made about this issue.Comment: 20 pages. Section 7, prop. 6 and 7. added. Some results made more
precis

### Optimal Control of Quantum Dynamics : A New Theoretical Approach

A New theoretical formalism for the optimal quantum control has been
presented. The approach stems from the consideration of describing the
time-dependent quantum system in terms of the real physical observables, viz.,
the probability density rho(x,t) and the quantum current j(x,t) which is well
documented in the Bohm's hydrodynamical formulation of quantum mechanics. The
approach has been applied for manipulating the vibrational motion of HBr in its
ground electronic state under an external electric field.Comment: 4 figure

### General spherically symmetric elastic stars in Relativity

The relativistic theory of elasticity is reviewed within the spherically
symmetric context with a view towards the modeling of star interiors possessing
elastic properties such as theones expected in neutron stars. Emphasis is
placed on generality in the main sections of the paper, and the results are
then applied to specific examples. Along the way, a few general results for
spacetimes admitting isometries are deduced, and their consequences are fully
exploited in the case of spherical symmetry relating them next to the the case
in which the material content of the spacetime is some elastic material. This
paper extends and generalizes the pioneering work by Magli and Kijowski [1],
Magli [2] and [3], and complements, in a sense, that by Karlovini and
Samuelsson in their interesting series of papers [4], [5] and [6].Comment: 23 page

### Physical theory of the twentieth century and contemporary philosophy

It has been shown that the criticism of Pauli as well as of Susskind and
Glogover may be avoided if the standard quantum-mechanical mathematical model
has been suitably extended. There is not more any reason for Einstein's
citicism, either, if in addition to some new results concerning Bell's
inequalities and Belifante's argument are taken into account. The ensemble
interpretation of quantum mechanics (or the hidden-variable theory) should be
preferred, which is also supported by the already published results of
experiments with three polarizers. Greater space in the text has been devoted
also to the discussion of epistemological problems and some philosophical
consequences.Comment: 12 page

- âŚ