4,973 research outputs found

    A quantification of hydrodynamical effects on protoplanetary dust growth

    Full text link
    Context. The growth process of dust particles in protoplanetary disks can be modeled via numerical dust coagulation codes. In this approach, physical effects that dominate the dust growth process often must be implemented in a parameterized form. Due to a lack of these parameterizations, existing studies of dust coagulation have ignored the effects a hydrodynamical gas flow can have on grain growth, even though it is often argued that the flow could significantly contribute either positively or negatively to the growth process. Aims. We intend to provide a quantification of hydrodynamical effects on the growth of dust particles, such that these effects can be parameterized and implemented in a dust coagulation code. Methods. We numerically integrate the trajectories of small dust particles in the flow of disk gas around a proto-planetesimal, sampling a large parameter space in proto-planetesimal radii, headwind velocities, and dust stopping times. Results. The gas flow deflects most particles away from the proto-planetesimal, such that its effective collisional cross section, and therefore the mass accretion rate, is reduced. The gas flow however also reduces the impact velocity of small dust particles onto a proto-planetesimal. This can be beneficial for its growth, since large impact velocities are known to lead to erosion. We also demonstrate why such a gas flow does not return collisional debris to the surface of a proto-planetesimal. Conclusions. We predict that a laminar hydrodynamical flow around a proto-planetesimal will have a significant effect on its growth. However, we cannot easily predict which result, the reduction of the impact velocity or the sweep-up cross section, will be more important. Therefore, we provide parameterizations ready for implementation into a dust coagulation code.Comment: 9 pages, 6 figures; accepted for publication in A&A; v2 matches the manuscript sent to the publisher (very minor changes

    Two-Source Dispersers for Polylogarithmic Entropy and Improved Ramsey Graphs

    Full text link
    In his 1947 paper that inaugurated the probabilistic method, Erd\H{o}s proved the existence of 2logn2\log{n}-Ramsey graphs on nn vertices. Matching Erd\H{o}s' result with a constructive proof is a central problem in combinatorics, that has gained a significant attention in the literature. The state of the art result was obtained in the celebrated paper by Barak, Rao, Shaltiel and Wigderson [Ann. Math'12], who constructed a 22(loglogn)1α2^{2^{(\log\log{n})^{1-\alpha}}}-Ramsey graph, for some small universal constant α>0\alpha > 0. In this work, we significantly improve the result of Barak~\etal and construct 2(loglogn)c2^{(\log\log{n})^c}-Ramsey graphs, for some universal constant cc. In the language of theoretical computer science, our work resolves the problem of explicitly constructing two-source dispersers for polylogarithmic entropy

    Radiocarbon dates from the Oxford AMS system: archaeometry datelist 35

    Get PDF
    This is the 35th list of AMS radiocarbon determinations measured at the Oxford Radiocarbon Accelerator Unit (ORAU). Amongst some of the sites included here are the latest series of determinations from the key sites of Abydos, El Mirón, Ban Chiang, Grotte de Pigeons (Taforalt), Alepotrypa and Oberkassel, as well as others dating to the Palaeolithic, Mesolithic and later periods. Comments on the significance of the results are provided by the submitters of the material

    Magnetic Moments of Dirac Neutrinos

    Get PDF
    The existence of a neutrino magnetic moment implies contributions to the neutrino mass via radiative corrections. We derive model-independent "naturalness" upper bounds on the magnetic moments of Dirac neutrinos, generated by physics above the electroweak scale. The neutrino mass receives a contribution from higher order operators, which are renormalized by operators responsible for the neutrino magnetic moment. This contribution can be calculated in a model independent way. In the absence of fine-tuning, we find that current neutrino mass limits imply that μν<1014|\mu_\nu| < 10^{-14} Bohr magnetons. This bound is several orders of magnitude stronger than those obtained from solar and reactor neutrino data and astrophysical observations.Comment: 3 pages. Talk given at PANIC'0

    The Vector Analyzing Power in Elastic Electron-Proton Scattering

    Get PDF
    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/ME/M, where EE and MM are the electron energy and nucleon mass, respectively. The leading order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Sub-leading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M)2{\cal O}(E/M)^2, we obtain a prediction for AnA_n that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle epep scattering.Comment: 24 pages, 11 figures. Typos fixe

    Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments

    Get PDF
    We construct the relationship between nonrenormalizable,effective, time-reversal violating (TV) parity-conserving (PC) interactions of quarks and gauge bosons and various low-energy TVPC and TV parity-violating (PV) observables. Using effective field theory methods, we delineate the scenarious under which experimental limits on permanent electric dipole moments (EDM's) of the electron, neutron, and neutral atoms as well as limits on TVPC observables provide the most stringent bounds on new TVPC interactions. Under scenarios in which parity invariance is restored at short distances, the one-loop EDM of elementary fermions generate the most severe constraints. The limits derived from the atomic EDM of 199^{199}Hg are considerably weaker. When parity symmetry remains broken at short distances, direct TVPC search limits provide the least ambiguous bounds. The direct limits follow from TVPC interactions between two quarks.Comment: 43 pages, 9 figure

    Non-relativistic limit in the 2+1 Dirac Oscillator: A Ramsey Interferometry Effect

    Get PDF
    We study the non-relativistic limit of a paradigmatic model in Relativistic Quantum Mechanics, the two-dimensional Dirac oscillator. Remarkably, we find a novel kind of Zitterbewegung which persists in this non-relativistic regime, and leads to an observable deformation of the particle orbit. This effect can be interpreted in terms of a Ramsey Interferometric phenomenon, allowing an insightful connection between Relativistic Quantum Mechanics and Quantum Optics. Furthermore, subsequent corrections to the non-relativistic limit, which account for the usual spin-orbit Zitterbewegung, can be neatly understood in terms of a Mach-Zehnder interferometer.Comment: RevTex4 file, color figures, submitted for publicatio

    2S hyperfine structure of atomic deuterium

    Full text link
    We have measured the frequency splitting between the (2S,F=1/2)(2S, F=1/2) and (2S,F=3/2)(2S, F=3/2) hyperfine sublevels in atomic deuterium by an optical differential method based on two-photon Doppler-free spectroscopy on a cold atomic beam. The result fHFS(D)(2S)=40924454(7)f_{\rm HFS}^{(D)}(2S)= 40 924 454(7) Hz is the most precise value for this interval to date. In comparison to the previous radio-frequency measurement we have improved the accuracy by the factor of three. The specific combination of hyperfine frequency intervals for metastable- and ground states in deuterium atom D21=8fHFS(D)(2S)fHFS(D)(1S)D_{21}=8f_{\rm HFS}^{(D)}(2S)-f_{\rm HFS}^{(D)}(1S) derived from our measurement is in a good agreement with D21D_{21} calculated from quantum-electrodynamics theory.Comment: 7 pages, 7 figure

    The SXI telescope on board EXIST: scientific performances

    Full text link
    The SXI telescope is one of the three instruments on board EXIST, a multiwavelength observatory in charge of performing a global survey of the sky in hard X-rays searching for Supermassive Black Holes. One of the primary objectives of EXIST is also to study with unprecedented sensitivity the most unknown high energy sources in the Universe, like high redshift GRBs, which will be pointed promptly by the Spacecraft by autonomous trigger based on hard X-ray localization on board. The recent addition of a soft X-ray telescope to the EXIST payload complement, with an effective area of ~950 cm2 in the energy band 0.2-3 keV and extended response up to 10 keV will allow to make broadband studies from 0.1 to 600 keV. In particular, investigations of the spectra components and states of AGNs and monitoring of variability of sources, study of the prompt and afterglow emission of GRBs since the early phases, which will help to constrain the emission models and finally, help the identification of sources in the EXIST hard X-ray survey and the characterization of the transient events detected. SXI will also perform surveys: a scanning survey with sky coverage of about 2pi and limiting flux of 5x10^{-14}cgs plus other serendipitous. We give an overview of the SXI scientific performance and also describe the status of its design emphasizing how it has been derived by the scientific requirements.Comment: 9 pages, 6 figures, to be published in Proc. of SPIE, vol 7435-11, 200
    corecore