160 research outputs found

    Gibbsian Hypothesis in Turbulence

    Full text link
    We show that Kolmogorov multipliers in turbulence cannot be statistically independent of others at adjacent scales (or even a finite range apart) by numerical simulation of a shell model and by theory. As the simplest generalization of independent distributions, we suppose that the steady-state statistics of multipliers in the shell model are given by a translation-invariant Gibbs measure with a short-range potential, when expressed in terms of suitable ``spin'' variables: real-valued spins that are logarithms of multipliers and XY-spins defined by local dynamical phases. Numerical evidence is presented in favor of the hypothesis for the shell model, in particular novel scaling laws and derivative relations predicted by the existence of a thermodynamic limit. The Gibbs measure appears to be in a high-temperature, unique-phase regime with ``paramagnetic'' spin order.Comment: 19 pages, 9 figures, greatly expanded content, accepted to appear in J. Stat. Phy

    Turbulent Cascade of Circulations

    Get PDF
    The circulation around any closed loop is a Lagrangian invariant for classical, smooth solutions of the incompressible Euler equations in any number of space dimensions. However, singular solutions relevant to turbulent flows need not preserve the classical integrals of motion. Here we generalize the Kelvin theorem on conservation of circulations to distributional solutions of Euler and give necessary conditions for the anomalous dissipation of circulations. We discuss the important role of Kelvin's theorem in turbulent vortex-stretching dynamics and conjecture a version of the theorem which may apply to suitable singular solutions

    Fluctuations in the Irreversible Decay of Turbulent Energy

    Full text link
    A fluctuation law of the energy in freely-decaying, homogeneous and isotropic turbulence is derived within standard closure hypotheses for 3D incompressible flow. In particular, a fluctuation-dissipation relation is derived which relates the strength of a stochastic backscatter term in the energy decay equation to the mean of the energy dissipation rate. The theory is based on the so-called ``effective action'' of the energy history and illustrates a Rayleigh-Ritz method recently developed to evaluate the effective action approximately within probability density-function (PDF) closures. These effective actions generalize the Onsager-Machlup action of nonequilibrium statistical mechanics to turbulent flow. They yield detailed, concrete predictions for fluctuations, such as multi-time correlation functions of arbitrary order, which cannot be obtained by direct PDF methods. They also characterize the mean histories by a variational principle.Comment: 26 pages, Latex Version 2.09, plus seceq.sty, a stylefile for sequential numbering of equations by section. This version includes new discussion of the physical interpretation of the formal Rayleigh-Ritz approximation. The title is also change

    Fluctuation-Response Relations for Multi-Time Correlations

    Full text link
    We show that time-correlation functions of arbitrary order for any random variable in a statistical dynamical system can be calculated as higher-order response functions of the mean history of the variable. The response is to a ``control term'' added as a modification to the master equation for statistical distributions. The proof of the relations is based upon a variational characterization of the generating functional of the time-correlations. The same fluctuation-response relations are preserved within moment-closures for the statistical dynamical system, when these are constructed via the variational Rayleigh-Ritz procedure. For the 2-time correlations of the moment-variables themselves, the fluctuation-response relation is equivalent to an ``Onsager regression hypothesis'' for the small fluctuations. For correlations of higher-order, there is a new effect in addition to such linear propagation of fluctuations present instantaneously: the dynamical generation of correlations by nonlinear interaction of fluctuations. In general, we discuss some physical and mathematical aspects of the {\it Ans\"{a}tze} required for an accurate calculation of the time correlations. We also comment briefly upon the computational use of these relations, which is well-suited for automatic differentiation tools. An example will be given of a simple closure for turbulent energy decay, which illustrates the numerical application of the relations.Comment: 28 pages, 1 figure, submitted to Phys. Rev.

    Resonant Interactions in Rotating Homogeneous Three-dimensional Turbulence

    Full text link
    Direct numerical simulations of three-dimensional (3D) homogeneous turbulence under rapid rigid rotation are conducted to examine the predictions of resonant wave theory for both small Rossby number and large Reynolds number. The simulation results reveal that there is a clear inverse energy cascade to the large scales, as predicted by 2D Navier-Stokes equations for resonant interactions of slow modes. As the rotation rate increases, the vertically-averaged horizontal velocity field from 3D Navier-Stokes converges to the velocity field from 2D Navier-Stokes, as measured by the energy in their difference field. Likewise, the vertically-averaged vertical velocity from 3D Navier-Stokes converges to a solution of the 2D passive scalar equation. The energy flux directly into small wave numbers in the kz=0k_z=0 plane from non-resonant interactions decreases, while fast-mode energy concentrates closer to that plane. The simulations are consistent with an increasingly dominant role of resonant triads for more rapid rotation

    Equation-free implementation of statistical moment closures

    Full text link
    We present a general numerical scheme for the practical implementation of statistical moment closures suitable for modeling complex, large-scale, nonlinear systems. Building on recently developed equation-free methods, this approach numerically integrates the closure dynamics, the equations of which may not even be available in closed form. Although closure dynamics introduce statistical assumptions of unknown validity, they can have significant computational advantages as they typically have fewer degrees of freedom and may be much less stiff than the original detailed model. The closure method can in principle be applied to a wide class of nonlinear problems, including strongly-coupled systems (either deterministic or stochastic) for which there may be no scale separation. We demonstrate the equation-free approach for implementing entropy-based Eyink-Levermore closures on a nonlinear stochastic partial differential equation.Comment: 7 pages, 2 figure