183 research outputs found

    A General Analytic Formula for the Spectral Index of the Density Perturbations produced during Inflation

    Full text link
    The standard calculation of the spectrum of density perturbations produced during inflation assumes that there is only one real dynamical degree of freedom during inflation. However, there is no reason to believe that this is actually the case. In this paper we derive general analytic formulae for the spectrum and spectral index of the density perturbations produced during inflation.Comment: 10 pages, more explanation and references added, version to be published in Progress of Theoretical Physic

    Inflation on Moduli Space and Cosmic Perturbations

    Full text link
    We show that a moduli space of the form predicted by string theory, lifted by supersymmetry breaking, gives rise to successful inflation for large regions of parameter space without any modification or fine tuning. This natural realization of inflation relies crucially on the complex nature of the moduli fields and the multiple points of enhanced symmetry, which are generic features of moduli space but not usually considered in inflationary model building. Our scenario predicts cosmic perturbations with an almost exactly flat spectrum for a wide range of scales with running on smaller, possibly observable, scales. The running takes the form of either an increasingly steep drop off of the spectrum, or a rise to a bump in the spectrum before an increasingly steep drop off.Comment: 23 pages, 4 figures; Added Fig. 1 and re-emphasis on dynamical selection of desirable initial angles for inflaton modulus. To be published in JHE

    Inflation model building in moduli space

    Full text link
    A self-consistent modular cosmology scenario and its testability in view of future CMB experiments are discussed. Particular attention is drawn to the enhanced symmetric points in moduli space which play crucial roles in our scenario. The running and moreover the running of running for the cosmic perturbation spectrum are also analyzed.Comment: 5 pages, to appear in PASCOS04 proceeding

    Damping of an oscillating scalar field indirectly coupled to a thermal bath

    Full text link
    The damping process of a homogeneous oscillating scalar field that indirectly interacts with a thermal bath through a mediator field is investigated over a wide range of model parameters. We consider two types of mediator fields, those that can decay to the thermal bath and those that are individually stable but pair annihilate. The former case has been extensively studied in the literature by treating the damping as a local effect after integrating out the assumed close-to-equilibrium mediator field. The same approach does not apply if the mediator field is stable and freezes out of equilibrium. To account for the latter case, we adopt a non-local description of damping that is only meaningful when we consider full half-oscillations of the field being damped. The damping rates of the oscillating scalar field and the corresponding heating rate of the thermal bath in all bulk parameter regions are calculated in both cases, corroborating previous results in the direct decay case. Using the obtained results, the time it takes for the amplitude of the scalar field to be substantially damped is estimated.Comment: 39 pages, 9 figures, 1 table; typos corrected, references adde

    Couplings and spectra in modular inflation

    Get PDF
    We analyze how the spectrum of perturbations produced in a multi-component modular inflation model proposed by Kadota and Stewart depends on couplings between the two moduli. Although some simple direct couplings give essentially the same results as the original model, dn/dlnkn1dn/d\ln k \propto n-1, simple indirect couplings produce a power law spectrum, n1=constantn-1 = \textrm{constant}, which can naturally be close to scale invariant.Comment: 11 pages, format changed, some corrections of formula

    CMB Spectral Distortion Constraints on Thermal Inflation

    Full text link
    Thermal inflation is a second epoch of exponential expansion at typical energy scales V1/41068GeVV^{1/4} \sim 10^{6 \sim 8} \mathrm{GeV}. If the usual primordial inflation is followed by thermal inflation, the primordial power spectrum is only modestly redshifted on large scales, but strongly suppressed on scales smaller than the horizon size at the beginning of thermal inflation, k>kb=abHbk > k_{\rm b} = a_{\rm b} H_{\rm b}. We calculate the spectral distortion of the cosmic microwave background generated by the dissipation of acoustic waves in this context. For kb103Mpc1k_{\rm b} \ll 10^3 \mathrm{Mpc}^{-1}, thermal inflation results in a large suppression of the μ\mu-distortion amplitude, predicting that it falls well below the standard value of μ2×108\mu \simeq 2\times 10^{-8}. Thus, future spectral distortion experiments, similar to PIXIE, can place new limits on the thermal inflation scenario, constraining kb103Mpc1k_{\rm b} \gtrsim 10^3 \mathrm{Mpc}^{-1} if μ2×108\mu \simeq 2\times 10^{-8} were found.Comment: 18 pages, 7 figure
    corecore