22 research outputs found

    Hydrodynamics of fluid-solid coexistence in dense shear granular flow

    Full text link
    We consider dense rapid shear flow of inelastically colliding hard disks. Navier-Stokes granular hydrodynamics is applied accounting for the recent finding \cite{Luding,Khain} that shear viscosity diverges at a lower density than the rest of constitutive relations. New interpolation formulas for constitutive relations between dilute and dense cases are proposed and justified in molecular dynamics (MD) simulations. A linear stability analysis of the uniform shear flow is performed and the full phase diagram is presented. It is shown that when the inelasticity of particle collision becomes large enough, the uniform sheared flow gives way to a two-phase flow, where a dense "solid-like" striped cluster is surrounded by two fluid layers. The results of the analysis are verified in event-driven MD simulations, and a good agreement is observed

    Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point?

    Full text link
    We investigate shear-induced crystallization in a very dense flow of mono-disperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity and temperature profiles. In particular, the model predicts a variety of multi-layer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solid-like) layers, each of which moving as a whole, separated by fluid-like regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is non-zero there, and there is energy flow through the boundaries of the "solid" layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.Comment: 11 pages, 7 eps figures, to appear in PR

    Velocity fluctuations of noisy reaction fronts propagating into a metastable state: testing theory in stochastic simulations

    Full text link
    The position of a reaction front, propagating into a metastable state, fluctuates because of the shot noise of reactions and diffusion. A recent theory [B. Meerson, P.V. Sasorov, and Y. Kaplan, Phys. Rev. E 84, 011147 (2011)] gave a closed analytic expression for the front diffusion coefficient in the weak noise limit. Here we test this theory in stochastic simulations involving reacting and diffusing particles on a one-dimensional lattice. We also investigate a small noise-induced systematic shift of the front velocity compared to the prediction from the spatially continuous deterministic reaction-diffusion equation.Comment: 5 pages, 5 figure

    A stochastic model for wound healing

    Full text link
    We present a discrete stochastic model which represents many of the salient features of the biological process of wound healing. The model describes fronts of cells invading a wound. We have numerical results in one and two dimensions. In one dimension we can give analytic results for the front speed as a power series expansion in a parameter, p, that gives the relative size of proliferation and diffusion processes for the invading cells. In two dimensions the model becomes the Eden model for p near 1. In both one and two dimensions for small p, front propagation for this model should approach that of the Fisher-Kolmogorov equation. However, as in other cases, this discrete model approaches Fisher-Kolmogorov behavior slowly.Comment: 16 pages, 7 figure

    Path-dependent course of epidemic: are two phases of quarantine better than one?

    Full text link
    The importance of a strict quarantine has been widely debated during the COVID-19 epidemic even from the purely epidemiological point of view. One argument against strict lockdown measures is that once the strict quarantine is lifted, the epidemic comes back, and so the cumulative number of infected individuals during the entire epidemic will stay the same. We consider an SIR model on a network and follow the disease dynamics, modeling the phases of quarantine by changing the node degree distribution. We show that the system reaches different steady states based on the history: the outcome of the epidemic is path-dependent despite the same final node degree distribution. The results indicate that two-phase route to the final node degree distribution (a strict phase followed by a soft phase) are always better than one phase (the same soft one) unless all the individuals have the same number of connections at the end (the same degree); in the latter case, the overall number of infected is indeed history-independent. The modeling also suggests that the optimal procedure of lifting the quarantine consists of releasing nodes in the order of their degree - highest first.Comment: 6 pages, 4 figures, accepted to EPL (Europhysics Letters

    Dynamics and pattern formation in invasive tumor growth

    Full text link
    In this work, we study the in-vitro dynamics of the most malignant form of the primary brain tumor: Glioblastoma Multiforme. Typically, the growing tumor consists of the inner dense proliferating zone and the outer less dense invasive region. Experiments with different types of cells show qualitatively different behavior. Wild-type cells invade a spherically symmetric manner, but mutant cells are organized in tenuous branches. We formulate a model for this sort of growth using two coupled reaction-diffusion equations for the cell and nutrient concentrations. When the ratio of the nutrient and cell diffusion coefficients exceeds some critical value, the plane propagating front becomes unstable with respect to transversal perturbations. The instability threshold and the full phase-plane diagram in the parameter space are determined. The results are in a good agreement with experimental findings for the two types of cells.Comment: 4 pages, 4 figure

    Minimizing the population extinction risk by migration

    Full text link
    Many populations in nature are fragmented: they consist of local populations occupying separate patches. A local population is prone to extinction due to the shot noise of birth and death processes. A migrating population from another patch can dramatically delay the extinction. What is the optimal migration rate that minimizes the extinction risk of the whole population? Here we answer this question for a connected network of model habitat patches with different carrying capacities.Comment: 7 pages, 3 figures, accepted for publication in PRL, appendix contains supplementary materia

    Fast migration and emergent population dynamics

    Full text link
    We consider population dynamics on a network of patches, each of which has a the same local dynamics, with different population scales (carrying capacities). It is reasonable to assume that if the patches are coupled by very fast migration the whole system will look like an individual patch with a large effective carrying capacity. This is called a "well-mixed" system. We show that, in general, it is not true that the well-mixed system has the same dynamics as each local patch. Different global dynamics can emerge from coupling, and usually must be figured out for each individual case. We give a general condition which must be satisfied for well-mixed systems to have the same dynamics as the constituent patches.Comment: 4 page
    corecore