8,639 research outputs found
Controlled synthesis of superparamagnetic iron-oxide nanoparticles by phase transformation
A synthesis procedure for generating a uniform distribution of iron-oxide nanoparticles from an amorphous precursor is reported. The investigation suggests no evidence of the formation of unwanted surface oxide layers, internal stress, and multiple phases. This is likely because the physical properties of the diffusion fields surrounding the nanoparticles are self-limiting by Fe(II) depletion. Inside the diffusion field surrounding the nucleation site, decreasing Fe(II) concentration results in a decrease in the diffusion rate that continues to decrease until self-limiting kinetic arrest occurs. The initial Fe(II) concentration is established by reducing a system abundant in Fe(III) by means of exposure to CO/CO2 gas at high temperature
The Phytoplankton of Lake Wawasee, Kosciusko County, Indiana
Lake Wawasee located at Syracuse, Indiana, is the largest body of water in the state. It has an area of 2,618 acres, a maximum depth of 68 feet and a shore line of approximately 22 miles.To our knowledge, the only paper published in which phytoplankters of Lake Wawasee are mentioned appeared in 1896. Those were Ceratium hirundinella, Rivularia and various forms of Palmella
Microbial-Physical Synthesis of Fe and Fe3O4 Magnetic Nanoparticles Using Aspergillus niger YESM1 and Supercritical Condition of Ethanol
Magnetic Fe and Fe3O4 (magnetite) nanoparticles are successfully synthesized using Aspergillus niger YESM 1 and supercritical condition of liquids. Aspergillus niger is used for decomposition of FeSO4 and FeCl3 to FeS and Fe2O3, respectively. The produced particles are exposed to supercritical condition of ethanol for 1 hour at 300∘ C and pressure of 850 psi. The phase structure and the morphology measurements yield pure iron and major Fe3O4 spherical nanoparticles with average size of 18 and 50 nm, respectively. The crystal size amounts to 9 nm for Fe and 8 nm for Fe3O4. The magnetic properties are measured to exhibit superparamagneticand ferromagnetic-like behaviors for Fe and Fe3O4 nanoparticles, respectively. The saturation magnetization amounts to 112 and 68 emu/g for Fe and Fe3O4, respectively. The obtained results open new route for using the biophysical method for large-scale production of highly magnetic nanoparticles to be used for biomedical applications
String Cosmology in Anisotropic Bianchi-II Space-time
The present study deals with a spatially homogeneous and anisotropic
Bianchi-II cosmological model representing massive strings. The energy-momentum
tensor, as formulated by Letelier (1983), has been used to construct a massive
string cosmological model for which the expansion scalar is proportional to one
of the components of shear tensor. The Einstein's field equations have been
solved by applying a variation law for generalized Hubble's parameter that
yields a constant value of deceleration parameter in Bianchi-II space-time. A
comparative study of accelerating and decelerating modes of the evolution of
universe has been carried out in the presence of string scenario. The study
reveals that massive strings dominate the early Universe. The strings
eventually disappear from the Universe for sufficiently large times, which is
in agreement with the current astronomical observations.Comment: 11 pages, 6 figures (To appear in Mod. Phys. Lett. A) In this
version, the cosmic string has been directed along z-direction and the
resultant field equations have been solved exactl
Fatigue crack initiation and small crack growth in several airframe alloys
The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41, and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis
The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data
The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews
A Superluminal Subway: The Krasnikov Tube
The ``warp drive'' metric recently presented by Alcubierre has the problem
that an observer at the center of the warp bubble is causally separated from
the outer edge of the bubble wall. Hence such an observer can neither create a
warp bubble on demand nor control one once it has been created. In addition,
such a bubble requires negative energy densities. One might hope that
elimination of the first problem might ameliorate the second as well. We
analyze and generalize a metric, originally proposed by Krasnikov for two
spacetime dimensions, which does not suffer from the first difficulty. As a
consequence, the Krasnikov metric has the interesting property that although
the time for a one-way trip to a distant star cannot be shortened, the time for
a round trip, as measured by clocks on Earth, can be made arbitrarily short. In
our four dimensional extension of this metric, a ``tube'' is constructed along
the path of an outbound spaceship, which connects the Earth and the star.
Inside the tube spacetime is flat, but the light cones are opened out so as to
allow superluminal travel in one direction. We show that, although a single
Krasnikov tube does not involve closed timelike curves, a time machine can be
constructed with a system of two non-overlapping tubes. Furthermore, it is
demonstrated that Krasnikov tubes, like warp bubbles and traversable wormholes,
also involve unphysically thin layers of negative energy density, as well as
large total negative energies, and therefore probably cannot be realized in
practice.Comment: 20 pages, LATEX, 5 eps figures, uses \eps
A Search for Variable Stars and Planetary Occultations in NGC2301 I: Techniques
We observed the young open cluster NGC 2301 for 14 nights in Feb. 2004 using
the orthogonal transfer CCD camera (OPTIC). We used PSF shaping techniques
("square stars") during the observations allowing a larger dynamic range (4.5
magnitudes) of high photometric precision results (2 mmag) to be obtained.
These results are better than similar observing campaigns using standard CCD
imagers. This paper discusses our observational techniques and presents initial
results for the variability statistics found in NGC 2301. Details of the
variability statistics as functions of color, variability type, stellar type,
and cluster location will appear in paper II
Fermion Masses and Mixing in Four and More Dimensions
We give an overview of recent progress in the study of fermion mass and
flavor mixing phenomena. Mass matrix ansatze are considered within the SM and
SUSY GUTs where some predictive frameworks based on SU(5) and SO(10) are
reviewed. We describe a variety of schemes to construct quark mass matrices in
extra dimensions focusing on four major classes: models with the SM residing on
3-brane, models with universal extra dimensions, models with split fermions and
models with warped extra dimensions. We outline how realistic patterns of quark
mass matrices could be derived from orbifold models in heterotic superstring
theory. Finally, we address the fermion mass problem in intersecting D-branes
scenarios, and present models with D6-branes able to give a good quantitatively
description of quark masses and mixing. The role of flavor/CP violation problem
as a probe of new physics is emphasized.Comment: a review based on seminars presented by S.K. in different places, 34
pages, late
- …