4,867 research outputs found
The Thin Gap Chambers database experience in test beam and preparations for ATLAS
Thin gap chambers (TGCs) are used for the muon trigger system in the forward
region of the LHC experiment ATLAS. The TGCs are expected to provide a trigger
signal within 25 ns of the bunch spacing. An extensive system test of the ATLAS
muon spectrometer has been performed in the H8 beam line at the CERN SPS during
the last few years. A relational database was used for storing the conditions
of the tests as well as the configuration of the system. This database has
provided the detector control system with the information needed for
configuration of the front end electronics. The database is used to assist the
online operation and maintenance. The same database is used to store the non
event condition and configuration parameters needed later for the offline
reconstruction software. A larger scale of the database has been produced to
support the whole TGC system. It integrates all the production, QA tests and
assembly information. A 1/12th model of the whole TGC system is currently in
use for testing the performance of this database in configuring and tracking
the condition of the system. A prototype of the database was first implemented
during the H8 test beams. This paper describes the database structure, its
interface to other systems and its operational performance.Comment: Proceedings IEEE, Nuclear Science Symposium 2005, Stockholm, Sweeden,
May 200
Using a neural network approach for muon reconstruction and triggering
The extremely high rate of events that will be produced in the future Large
Hadron Collider requires the triggering mechanism to take precise decisions in
a few nano-seconds. We present a study which used an artificial neural network
triggering algorithm and compared it to the performance of a dedicated
electronic muon triggering system. Relatively simple architecture was used to
solve a complicated inverse problem. A comparison with a realistic example of
the ATLAS first level trigger simulation was in favour of the neural network. A
similar architecture trained after the simulation of the electronics first
trigger stage showed a further background rejection.Comment: A talk given at ACAT03, KEK, Japan, November 2003. Submitted to
Nuclear Instruments and Methods in Physics Research, Section
Plasma Panel Sensors for Particle and Beam Detection
The plasma panel sensor (PPS) is an inherently digital, high gain, novel
variant of micropattern gas detectors inspired by many operational and
fabrication principles common to plasma display panels (PDPs). The PPS is
comprised of a dense array of small, plasma discharge, gas cells within a
hermetically-sealed glass panel, and is assembled from non-reactive,
intrinsically radiation-hard materials such as glass substrates, metal
electrodes and mostly inert gas mixtures. We are developing the technology to
fabricate these devices with very low mass and small thickness, using gas gaps
of at least a few hundred micrometers. Our tests with these devices demonstrate
a spatial resolution of about 1 mm. We intend to make PPS devices with much
smaller cells and the potential for much finer position resolutions. Our PPS
tests also show response times of several nanoseconds. We report here our
results in detecting betas, cosmic-ray muons, and our first proton beam tests.Comment: 2012 IEEE NS
Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound
We study asymptotic lower and upper bounds for the sizes of constant
dimension codes with respect to the subspace or injection distance, which is
used in random linear network coding. In this context we review known upper
bounds and show relations between them. A slightly improved version of the
so-called linkage construction is presented which is e.g. used to construct
constant dimension codes with subspace distance , dimension of the
codewords for all field sizes , and sufficiently large dimensions of the
ambient space, that exceed the MRD bound, for codes containing a lifted MRD
code, by Etzion and Silberstein.Comment: 30 pages, 3 table
Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP
The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb
Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2
The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data
Data acquisition system for quality tests of the ATLAS muon endcap trigger chambers
The ATLAS Collaboration is building a general-purpose pp detector which is designed to exploit the full discovery potential of the high energy proton-proton interaction Large Hadron Collider (LHC) at Cern. The LHC offers a large range of physics opportunities, among which the origin of mass at the electroweak scale is a major focus of interest of ATLAS. The Thin Gap Chambers (TGCs) are detectors designed to detect the high transverse momentum muons in the endcap of the ATLAS detector. The short response time of the TGCs makes it an ideal trigger system for selecting interesting events in the highly packed environment of the LHC accelerator. The subject of this paper is the design and operation of the data acquisition system, which serves to automatize the procedure of the performance of the TGC detector, before are to be installed in the ATLAS experiment. (3 refs)
- …