151 research outputs found
A Generative Model for Parts-based Object Segmentation
The Shape Boltzmann Machine (SBM) [1] has recently been introduced as a stateof-the-art model of foreground/background object shape. We extend the SBM to account for the foreground object’s parts. Our new model, the Multinomial SBM (MSBM), can capture both local and global statistics of part shapes accurately. We combine the MSBM with an appearance model to form a fully generative model of images of objects. Parts-based object segmentations are obtained simply by performing probabilistic inference in the model. We apply the model to two challenging datasets which exhibit significant shape and appearance variability, and find that it obtains results that are comparable to the state-of-the-art. There has been significant focus in computer vision on object recognition and detection e.g. [2], but a strong desire remains to obtain richer descriptions of objects than just their bounding boxes. One such description is a parts-based object segmentation, in which an image is partitioned into multiple sets of pixels, each belonging to either a part of the object of interest, or its background. The significance of parts in computer vision has been recognized since the earliest days of th
Consensus Message Passing for Layered Graphical Models
Generative models provide a powerful framework for probabilistic reasoning.
However, in many domains their use has been hampered by the practical
difficulties of inference. This is particularly the case in computer vision,
where models of the imaging process tend to be large, loopy and layered. For
this reason bottom-up conditional models have traditionally dominated in such
domains. We find that widely-used, general-purpose message passing inference
algorithms such as Expectation Propagation (EP) and Variational Message Passing
(VMP) fail on the simplest of vision models. With these models in mind, we
introduce a modification to message passing that learns to exploit their
layered structure by passing 'consensus' messages that guide inference towards
good solutions. Experiments on a variety of problems show that the proposed
technique leads to significantly more accurate inference results, not only when
compared to standard EP and VMP, but also when compared to competitive
bottom-up conditional models.Comment: Appearing in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) 201
Generative Temporal Models with Spatial Memory for Partially Observed Environments
In model-based reinforcement learning, generative and temporal models of
environments can be leveraged to boost agent performance, either by tuning the
agent's representations during training or via use as part of an explicit
planning mechanism. However, their application in practice has been limited to
simplistic environments, due to the difficulty of training such models in
larger, potentially partially-observed and 3D environments. In this work we
introduce a novel action-conditioned generative model of such challenging
environments. The model features a non-parametric spatial memory system in
which we store learned, disentangled representations of the environment.
Low-dimensional spatial updates are computed using a state-space model that
makes use of knowledge on the prior dynamics of the moving agent, and
high-dimensional visual observations are modelled with a Variational
Auto-Encoder. The result is a scalable architecture capable of performing
coherent predictions over hundreds of time steps across a range of partially
observed 2D and 3D environments.Comment: ICML 201
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
We propose an efficient nonparametric strategy for learning a message
operator in expectation propagation (EP), which takes as input the set of
incoming messages to a factor node, and produces an outgoing message as output.
This learned operator replaces the multivariate integral required in classical
EP, which may not have an analytic expression. We use kernel-based regression,
which is trained on a set of probability distributions representing the
incoming messages, and the associated outgoing messages. The kernel approach
has two main advantages: first, it is fast, as it is implemented using a novel
two-layer random feature representation of the input message distributions;
second, it has principled uncertainty estimates, and can be cheaply updated
online, meaning it can request and incorporate new training data when it
encounters inputs on which it is uncertain. In experiments, our approach is
able to solve learning problems where a single message operator is required for
multiple, substantially different data sets (logistic regression for a variety
of classification problems), where it is essential to accurately assess
uncertainty and to efficiently and robustly update the message operator.Comment: accepted to UAI 2015. Correct typos. Add more content to the
appendix. Main results unchange
Self-supervised video pretraining yields human-aligned visual representations
Humans learn powerful representations of objects and scenes by observing how
they evolve over time. Yet, outside of specific tasks that require explicit
temporal understanding, static image pretraining remains the dominant paradigm
for learning visual foundation models. We question this mismatch, and ask
whether video pretraining can yield visual representations that bear the
hallmarks of human perception: generalisation across tasks, robustness to
perturbations, and consistency with human judgements. To that end we propose a
novel procedure for curating videos, and develop a contrastive framework which
learns from the complex transformations therein. This simple paradigm for
distilling knowledge from videos, called VITO, yields general representations
that far outperform prior video pretraining methods on image understanding
tasks, and image pretraining methods on video understanding tasks. Moreover,
VITO representations are significantly more robust to natural and synthetic
deformations than image-, video-, and adversarially-trained ones. Finally,
VITO's predictions are strongly aligned with human judgements, surpassing
models that were specifically trained for that purpose. Together, these results
suggest that video pretraining could be a simple way of learning unified,
robust, and human-aligned representations of the visual world.Comment: Technical repor
- …