8 research outputs found

    Salt-Induced Control of the Grafting Density in Poly(ethylene glycol) Brush Layers by a Grafting-to Approach

    Get PDF
    In this work, a method to obtain control of the grafting density during the formation of polymer brush layers by the grafting-to method of thiolated poly­(ethylene glycol) onto gold is presented. The grafting density of the polymer chains was adjusted by adding Na<sub>2</sub>SO<sub>4</sub> in concentrations between 0.2 and 0.9 M to the aqueous polymer solution during the grafting process. The obtained grafting densities ranged from 0.26 to 1.60 chains nm<sup>–2</sup>, as determined by surface plasmon resonance. The kinetics of the grafting process were studied in situ by a quartz crystal microbalance with dissipation, and a mushroom to brush conformational transition was observed when the polymer was grafted in the presence of Na<sub>2</sub>SO<sub>4</sub>. The transition from mushroom to brush was only observed for long periods of grafting, highlighting the importance of time to obtain high grafting densities. Finally, the prepared brush layer with the highest grafting density showed high resistance to the adsorption of bovine serum albumin, while layers with a lower grafting density showed only limited resistance

    Fully Biobased Adhesive from Chitosan and Tannic Acid with High Water Resistance

    No full text
    In this study, we developed a fully biobased adhesive using chitosan and tannic acid, drawing inspiration from natural mussel adhesive mechanisms. Our goal was to address the technological challenges associated with creating environmentally friendly adhesives that can perform comparably to their synthetic counterparts, particularly in terms of water resistance. The methodology involved the molecular complexation of chitosan, a polysaccharide rich in amine groups, with tannic acid, which is known for its galloyl moieties. This complexation mimics the dopa-lysine synergy found in mussel adhesives, leading to a cohesive and adhesive material under the right pH conditions. Notably, after mild thermal curing (70 °C for 2 h), our biobased adhesive demonstrated outstanding water resistance and long-term durability. It maintained a lap shear strength of approximately 3.5 MPa even after immersion in water for 2 months and could be stretched and released more than 1000 times before breaking. These performance metrics surpassed those of a commercial water-resistant adhesive, Gorilla Glue, and a well-known strong dry adhesive, Loctite Super Glue (both cured under their recommended conditions). The success of this adhesive underscores the importance of leveraging nature’s mechanisms, such as molecular complexation and bioinspired chemistry, in developing next-generation biobased adhesives that overcome the challenge of poor water resistance. This biobased adhesive has potential applications as a sustainable alternative to petroleum-based adhesives, while the price and availability of the biobased raw materials need continuous evaluation

    The development of violinism in the Slovene lands until the beginning of the Second World War

    No full text
    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly­(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra, provided information regarding composition, including water content, and ionization state of weak acidic and basic groups present in the thin composite film. Low molecular weight PAA, mainly in its protonated form, diffuses into and out of the composite film during adsorption and rinsing steps. The higher molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using atomic force microscopy operating in PeakForce tapping mode. The multilayer consists of islands that grow in lateral dimension and height during the build-up process, leading to close to exponentially increasing roughness with deposition number. Both diffusion in and out of at least one of the two components (PAA) and the island-like morphology contribute to the nonlinear growth of chitosan/PAA multilayers

    A Biomimetic Water-Resistant Adhesive Based on ε‑Polylysine/Tannic Acid Complexation

    No full text
    This study investigates the potential of combining ε-polylysine and tannic acid to develop bio-based adhesives with enhanced water resistance. The two biomolecules exhibited complexation/precipitation in aqueous solutions in the pH range of 5–9. Water-based adhesives were prepared using complexes formed at pH 5, 7, and 9, followed by evaluation of their adhesion properties in both dry and wet lap shear tests. The complexes prepared at higher pH values showed a larger adhesion strength and improved water resistance. To further enhance the adhesive properties, an epoxide-based reagent was utilized to double-cross-link the complexes, resulting in a lap shear strength of ∼2 MPa after being submerged in water for 7 days

    Direct Measurement of Colloidal Interactions between Polyaniline Surfaces in a UV-Curable Coating Formulation: The Effect of Surface Hydrophilicity/Hydrophobicity and Resin Composition

    No full text
    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteristics (hydrophilic and hydrophobic) were synthesized directly on spherical polystyrene particles of 10 μm in diameter. Surface forces were measured between core/shell structured polystyrene/polyaniline particles (and a pure polystyrene particle as reference) mounted on an atomic force microscope cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast, interactions between hydrophobic polyaniline (doped with n-decyl phosphonic acid) were dominated by attractive forces, suggesting less compatibility and higher tendency for aggregation of these particles in liquid polyester acrylate compared to hydrophilic polyaniline. Both observations are in agreement with the conclusions from the interfacial energy studies performed by contact angle measurements

    Marketing strategy challenges for the brand Lisca in the German market

    Full text link
    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly­(acrylic acid) multilayer using the layer-by-layer approach. After cross-linking the chitosan present in the polyelectrolyte multilayer, poly­(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross-linking density. The amount of poly­(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels with respect to pH changes was probed by quartz crystal microbalance with dissipation (QCM-D) and TIRR. Highly cross-linked gels show a small and fully reversible behavior when the solution pH is switched between pH 2.7 and 5.7. In contrast, low cross-linked gels are more responsive to pH changes, but the response is fully reversible only after the first exposure to the acidic solution, once an internal restructuring of the gel has taken place. Two distinct p<i>K</i><sub>a</sub>’s for both chitosan and poly­(acrylic acid), were determined for the cross-linked structure using TIRR. They are associated with populations of chargeable groups displaying either a bulk like dissociation behavior or forming ionic complexes inside the hydrogel film

    Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    No full text
    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of <i>supercooled</i> water at subzero temperatures and the derived work of adhesion that are important for applications dealing with icing. In this work we address this issue by determining the temperature-dependent dynamic contact angle of microliter-sized water droplets on a smooth hydrophobic and a superhydrophobic surface with similar surface chemistry. The data highlight how the work of adhesion of water in the temperature interval from about 25 °C to below −10 °C is affected by surface topography. A marked decrease in contact angle on the superhydrophobic surface is observed with decreasing temperature, and we attribute this to condensation below the dew point. In contrast, no significant wetting transition is observed on the smooth hydrophobic surface. The freezing temperature and the freezing delay time were determined for water droplets resting on a range of surfaces with similar chemistry but different topography, including smooth and rough surfaces in either the Wenzel or the Cassie–Baxter state as characterized by water contact angle measurements at room temperature. We find that the water freezing delay time is not significantly affected by the surface topography and discuss this finding within the classical theory of heterogeneous nucleation

    Sustained Frictional Instabilities on Nanodomed Surfaces: Stick–Slip Amplitude Coefficient

    No full text
    Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modern miniaturized devices. In this work, lateral force microscopy was used to study the frictional properties between an AFM nanotip and surfaces bearing well-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons’ first law of friction, although no direct correlation between the sample topographic properties and their measured friction coefficients was identified. Furthermore, all the nanodomed textures exhibited pronounced oscillations in the shear traces, similar to the classic stick–slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick–slip oscillations, σ<sub><i>f</i></sub>, was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope of this linear plot as the stick–slip amplitude coefficient (SSAC). We suggest that such stick–slip behaviors are characteristics of surfaces with nanotextures and that such local frictional instabilities have important implications to surface damage and wear. We thus propose that the shear characteristics of the nanodomed surfaces cannot be fully described by the framework of Amontons’ laws of friction and that additional parameters (<i>e.g.</i>, σ<sub><i>f</i></sub> and SSAC) are required, when their friction, lubrication, and wear properties are important considerations in related nanodevices
    corecore