6 research outputs found

    Ultraviolet Photodissociation of ESI- and MALDI-Generated Protein Ions on a Q‑Exactive Mass Spectrometer

    No full text
    The identification of molecular ions produced by MALDI or ESI strongly relies on their fragmentation to structurally informative fragments. The widely diffused fragmentation techniques for ESI multiply charged ions are either incompatible (ECD and ETD) or show lower efficiency (CID, HCD), with the predominantly singly charged peptide and protein ions formed by MALDI. In-source decay has been successfully adopted to sequence MALDI-generated ions, but it further increases spectral complexity, and it is not compatible with mass-spectrometry imaging. Excellent UVPD performances, in terms of number of fragment ions and sequence coverage, has been demonstrated for electrospray ionization for multiple proteomics applications. UVPD showed a much lower charge-state dependence, and so protein ions produced by MALDI may exhibit equal propensity to fragment. Here we report UVPD implementation on an Orbitrap Q-Exactive Plus mass spectrometer equipped with an ESI/EP-MALDI. UVPD of MALDI-generated ions was benchmarked against MALDI-ISD, MALDI-HCD, and ESI-UVPD. MALDI-UVPD outperformed MALDI-HCD and ISD, efficiently sequencing small proteins ions. Moreover, the singly charged nature of MALDI-UVPD avoids the bioinformatics challenges associated with highly congested ESI-UVPD mass spectra. Our results demonstrate the ability of UVPD to further improve tandem mass spectrometry capabilities for MALDI-generated protein ions. Data are available via ProteomeXchange with identifier PXD011526

    Improving SRM Assay Development: A Global Comparison between Triple Quadrupole, Ion Trap, and Higher Energy CID Peptide Fragmentation Spectra

    No full text
    In proteomics, selected reaction monitoring (SRM) is rapidly gaining importance for targeted protein quantification. The triple quadrupole mass analyzers used in SRM assays allow for levels of specificity and sensitivity hard to accomplish by more standard shotgun proteomics experiments. Often, an SRM assay is built by in silico prediction of transitions and/or extraction of peptide precursor and fragment ions from a spectral library. Spectral libraries are typically generated from nonideal ion trap based shotgun proteomics experiments or synthetic peptide libraries, consuming considerable time and effort. Here, we investigate the usability of beam type CID (or “higher energy CID” (HCD)) peptide fragmentation spectra, as acquired using an Orbitrap Velos, to facilitate SRM assay development. Therefore, peptide fragmentation spectra, obtained by ion-trap CID, triple-quadrupole CID (QqQ-CID) and Orbitrap HCD, originating from digested cellular lysates, were compared. Spectral comparison and a dedicated correlation algorithm indicated significantly higher similarity between QqQ-CID and HCD fragmentation spectra than between QqQ-CID and ion trap-CID spectra. SRM transitions generated using a constructed HCD spectral library increased SRM assay sensitivity up to 2-fold, when compared to the use of a library created from more conventionally used ion trap-CID spectra, showing that HCD spectra can assist SRM assay development

    Improving SRM Assay Development: A Global Comparison between Triple Quadrupole, Ion Trap, and Higher Energy CID Peptide Fragmentation Spectra

    No full text
    In proteomics, selected reaction monitoring (SRM) is rapidly gaining importance for targeted protein quantification. The triple quadrupole mass analyzers used in SRM assays allow for levels of specificity and sensitivity hard to accomplish by more standard shotgun proteomics experiments. Often, an SRM assay is built by in silico prediction of transitions and/or extraction of peptide precursor and fragment ions from a spectral library. Spectral libraries are typically generated from nonideal ion trap based shotgun proteomics experiments or synthetic peptide libraries, consuming considerable time and effort. Here, we investigate the usability of beam type CID (or “higher energy CID” (HCD)) peptide fragmentation spectra, as acquired using an Orbitrap Velos, to facilitate SRM assay development. Therefore, peptide fragmentation spectra, obtained by ion-trap CID, triple-quadrupole CID (QqQ-CID) and Orbitrap HCD, originating from digested cellular lysates, were compared. Spectral comparison and a dedicated correlation algorithm indicated significantly higher similarity between QqQ-CID and HCD fragmentation spectra than between QqQ-CID and ion trap-CID spectra. SRM transitions generated using a constructed HCD spectral library increased SRM assay sensitivity up to 2-fold, when compared to the use of a library created from more conventionally used ion trap-CID spectra, showing that HCD spectra can assist SRM assay development

    Improving SRM Assay Development: A Global Comparison between Triple Quadrupole, Ion Trap, and Higher Energy CID Peptide Fragmentation Spectra

    No full text
    In proteomics, selected reaction monitoring (SRM) is rapidly gaining importance for targeted protein quantification. The triple quadrupole mass analyzers used in SRM assays allow for levels of specificity and sensitivity hard to accomplish by more standard shotgun proteomics experiments. Often, an SRM assay is built by in silico prediction of transitions and/or extraction of peptide precursor and fragment ions from a spectral library. Spectral libraries are typically generated from nonideal ion trap based shotgun proteomics experiments or synthetic peptide libraries, consuming considerable time and effort. Here, we investigate the usability of beam type CID (or “higher energy CID” (HCD)) peptide fragmentation spectra, as acquired using an Orbitrap Velos, to facilitate SRM assay development. Therefore, peptide fragmentation spectra, obtained by ion-trap CID, triple-quadrupole CID (QqQ-CID) and Orbitrap HCD, originating from digested cellular lysates, were compared. Spectral comparison and a dedicated correlation algorithm indicated significantly higher similarity between QqQ-CID and HCD fragmentation spectra than between QqQ-CID and ion trap-CID spectra. SRM transitions generated using a constructed HCD spectral library increased SRM assay sensitivity up to 2-fold, when compared to the use of a library created from more conventionally used ion trap-CID spectra, showing that HCD spectra can assist SRM assay development

    Improving SRM Assay Development: A Global Comparison between Triple Quadrupole, Ion Trap, and Higher Energy CID Peptide Fragmentation Spectra

    No full text
    In proteomics, selected reaction monitoring (SRM) is rapidly gaining importance for targeted protein quantification. The triple quadrupole mass analyzers used in SRM assays allow for levels of specificity and sensitivity hard to accomplish by more standard shotgun proteomics experiments. Often, an SRM assay is built by in silico prediction of transitions and/or extraction of peptide precursor and fragment ions from a spectral library. Spectral libraries are typically generated from nonideal ion trap based shotgun proteomics experiments or synthetic peptide libraries, consuming considerable time and effort. Here, we investigate the usability of beam type CID (or “higher energy CID” (HCD)) peptide fragmentation spectra, as acquired using an Orbitrap Velos, to facilitate SRM assay development. Therefore, peptide fragmentation spectra, obtained by ion-trap CID, triple-quadrupole CID (QqQ-CID) and Orbitrap HCD, originating from digested cellular lysates, were compared. Spectral comparison and a dedicated correlation algorithm indicated significantly higher similarity between QqQ-CID and HCD fragmentation spectra than between QqQ-CID and ion trap-CID spectra. SRM transitions generated using a constructed HCD spectral library increased SRM assay sensitivity up to 2-fold, when compared to the use of a library created from more conventionally used ion trap-CID spectra, showing that HCD spectra can assist SRM assay development

    Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence

    No full text
    We report a straightforward strategy to comprehensively monitor signal transduction pathway dynamics in mammalian systems. Combining targeted quantitative proteomics with highly selective phosphopeptide enrichment, we monitor, with great sensitivity, phosphorylation dynamics of the PI3K-mTOR and MAPK signaling networks. Our approach consists of a single enrichment step followed by a single targeted proteomics experiment, circumventing the need for labeling and immune purification while enabling analysis of selected phosphorylation nodes throughout signaling pathways. The need for such a comprehensive pathway analysis is illustrated by highlighting previously uncharacterized phosphorylation changes in oncogene-induced senescence, associated with diverse biological phenotypes and pharmacological intervention of the PI3K-mTOR pathway
    corecore