211 research outputs found
The JetCurry Code. I. Reconstructing Three-Dimensional Jet Geometry from Two-Dimensional images
We present a reconstruction of jet geometry models using numerical methods
based on a Markov ChainMonte Carlo (MCMC) and limited memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimized algorithm. Our aim is to
model the three-dimensional geometry of an AGN jet using observations, which
are inherently two-dimensional. Many AGN jets display complex hotspots and
bends over the kiloparsec scales. The structure of these bends in the jets
frame may be quite different than what we see in the sky frame, transformed by
our particular viewing geometry. The knowledge of the intrinsic structure will
be helpful in understanding the appearance of the magnetic field and hence
emission and particle acceleration processes over the length of the jet. We
present the method used, as well as a case study based on a region of the M87
jet.Comment: Submitted to ApJ on Feb 01, 201
High Energy Variability Of Synchrotron-Self Compton Emitting Sources: Why One Zone Models Do Not Work And How We Can Fix It
With the anticipated launch of GLAST, the existing X-ray telescopes, and the
enhanced capabilities of the new generation of TeV telescopes, developing tools
for modeling the variability of high energy sources such as blazars is becoming
a high priority. We point out the serious, innate problems one zone
synchrotron-self Compton models have in simulating high energy variability. We
then present the first steps toward a multi zone model where non-local, time
delayed Synchrotron-self Compton electron energy losses are taken into account.
By introducing only one additional parameter, the length of the system, our
code can simulate variability properly at Compton dominated stages, a situation
typical of flaring systems. As a first application, we were able to reproduce
variability similar to that observed in the case of the puzzling `orphan' TeV
flares that are not accompanied by a corresponding X-ray flare.Comment: to appear in the 1st GLAST symposium proceeding
The Event Horizon of M87
The 6 billion solar mass supermassive black hole at the center of the giant
elliptical galaxy M87 powers a relativistic jet. Observations at millimeter
wavelengths with the Event Horizon Telescope have localized the emission from
the base of this jet to angular scales comparable to the putative black hole
horizon. The jet might be powered directly by an accretion disk or by
electromagnetic extraction of the rotational energy of the black hole. However,
even the latter mechanism requires a confining thick accretion disk to maintain
the required magnetic flux near the black hole. Therefore, regardless of the
jet mechanism, the observed jet power in M87 implies a certain minimum mass
accretion rate. If the central compact object in M87 were not a black hole but
had a surface, this accretion would result in considerable thermal
near-infrared and optical emission from the surface. Current flux limits on the
nucleus of M87 strongly constrain any such surface emission. This rules out the
presence of a surface and thereby provides indirect evidence for an event
horizon.Comment: 9 pages, 2 figures, submitted to Ap
The HI Environment of Nearby Lyman-alpha Absorbers
We present the results of a VLA and WSRT search for HI emission from the
vicinity of seven nearby clouds, which were observed in Lya absorption with HST
toward Mrk335, Mrk501 and PKS2155-304. We searched a volume of 40' x 40' x 1000
km/s. The HI mass sensitivity (5 sigma) varies from 5x10^6 to 5x10^8 Msun. We
detected HI emission in the vicinity of four out of seven absorbers. The
closest galaxy is a small dwarf galaxy at a projected distance of 68/h kpc from
the sight line toward Mrk335. It has the same velocity (V=1970 km/s) as one of
the absorbers, and has an HI mass of only 4x10^7 Msun. We found a more luminous
galaxy at the velocity (V=5100 km/s) of one of the absorbers toward
PKS2155-304, 230/h kpc from the sight line. Two other, stronger absorbers
toward PKS2155-304 at V=17,000 km/s are associated with a loose group of three
bright spiral galaxies, at projected distances of 300 to 600/h kpc. These
results support the conclusion that most nearby Lya forest clouds trace the
large-scale structures outlined by optically luminous galaxies. We do not find
any evidence for a physical association between an absorber and its closest
galaxy.Comment: 4 Tables, 11 Figures, to be published in Astron J. (Oct 1996) Vol 11
New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations
One aspect of the quantum nature of spacetime is its "foaminess" at very
small scales. Many models for spacetime foam are defined by the accumulation
power , which parameterizes the rate at which Planck-scale spatial
uncertainties (and thephase shifts they produce) may accumulate over large
path-lengths. Here is defined by theexpression for the path-length
fluctuations, , of a source at distance , wherein , with being the Planck
length. We reassess previous proposals to use astronomical observations
ofdistant quasars and AGN to test models of spacetime foam. We show explicitly
how wavefront distortions on small scales cause the image intensity to decay to
the point where distant objects become undetectable when the path-length
fluctuations become comparable to the wavelength of the radiation. We use X-ray
observations from {\em Chandra} to set the constraint ,
which rules out the random walk model (with ). Much firmer
constraints canbe set utilizing detections of quasars at GeV energies with {\em
Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: and , respectively. These limits on
seem to rule out , the model of some physical interest.Comment: 11 pages, 9 figures, ApJ, in pres
- …