471 research outputs found
Happy endings for flip graphs
We show that the triangulations of a finite point set form a flip graph that
can be embedded isometrically into a hypercube, if and only if the point set
has no empty convex pentagon. Point sets of this type include convex subsets of
lattices, points on two lines, and several other infinite families. As a
consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio
Recommended from our members
Subquadratic nonobtuse triangulation of convex polygons
A convex polygon with n sides can be triangulated by O(n^1.85) triangles, without any obtuse angles. The construction uses a novel form of geometric divide and conquer
Cubic Partial Cubes from Simplicial Arrangements
We show how to construct a cubic partial cube from any simplicial arrangement
of lines or pseudolines in the projective plane. As a consequence, we find nine
new infinite families of cubic partial cubes as well as many sporadic examples.Comment: 11 pages, 10 figure
Linear Complexity Hexahedral Mesh Generation
We show that any polyhedron forming a topological ball with an even number of
quadrilateral sides can be partitioned into O(n) topological cubes, meeting
face to face. The result generalizes to non-simply-connected polyhedra
satisfying an additional bipartiteness condition. The same techniques can also
be used to reduce the geometric version of the hexahedral mesh generation
problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at
the 12th ACM Symp. on Computational Geometry. This is the final version, and
will appear in a special issue of Computational Geometry: Theory and
Applications for papers from SCG '9
- …