9 research outputs found

    Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays

    No full text
    The discovery of high-efficiency Mn4+-activated fluoride red phosphors with short excited-state lifetimes (ESLs) is urgent and crucial for high-quality, wide-color-gamut display applications. However, it is still a great challenge to design target phosphors with both short ESL and high luminescence efficiency. Herein, we propose an efficient machine learning approach based on a small dataset to establish the ESL prediction model, thereby facilitating the discovery of new Mn4+-activated fluorides with short ESLs. Such a model can not only accurately predict the ESLs of Mn4+ in fluorides but also quantify the impact of structure features on ESLs, therefore elucidating the “structure-lifetime” correlations. Guided by the correlations, two new Mn4+-doped tetramethylammonium (TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7 ms) and high quantum efficiencies (internal QEs > 92%, external QEs > 55%) have been discovered successfully. A prototype displayer with excellent performance (∼124% National Television Standards Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight module, demonstrating its practical prospects in high-quality displays. This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference for accelerating the discovery of new promising phosphors

    Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays

    No full text
    The discovery of high-efficiency Mn4+-activated fluoride red phosphors with short excited-state lifetimes (ESLs) is urgent and crucial for high-quality, wide-color-gamut display applications. However, it is still a great challenge to design target phosphors with both short ESL and high luminescence efficiency. Herein, we propose an efficient machine learning approach based on a small dataset to establish the ESL prediction model, thereby facilitating the discovery of new Mn4+-activated fluorides with short ESLs. Such a model can not only accurately predict the ESLs of Mn4+ in fluorides but also quantify the impact of structure features on ESLs, therefore elucidating the “structure-lifetime” correlations. Guided by the correlations, two new Mn4+-doped tetramethylammonium (TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7 ms) and high quantum efficiencies (internal QEs > 92%, external QEs > 55%) have been discovered successfully. A prototype displayer with excellent performance (∼124% National Television Standards Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight module, demonstrating its practical prospects in high-quality displays. This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference for accelerating the discovery of new promising phosphors

    Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays

    No full text
    The discovery of high-efficiency Mn4+-activated fluoride red phosphors with short excited-state lifetimes (ESLs) is urgent and crucial for high-quality, wide-color-gamut display applications. However, it is still a great challenge to design target phosphors with both short ESL and high luminescence efficiency. Herein, we propose an efficient machine learning approach based on a small dataset to establish the ESL prediction model, thereby facilitating the discovery of new Mn4+-activated fluorides with short ESLs. Such a model can not only accurately predict the ESLs of Mn4+ in fluorides but also quantify the impact of structure features on ESLs, therefore elucidating the “structure-lifetime” correlations. Guided by the correlations, two new Mn4+-doped tetramethylammonium (TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7 ms) and high quantum efficiencies (internal QEs > 92%, external QEs > 55%) have been discovered successfully. A prototype displayer with excellent performance (∼124% National Television Standards Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight module, demonstrating its practical prospects in high-quality displays. This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference for accelerating the discovery of new promising phosphors

    Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays

    No full text
    The discovery of high-efficiency Mn4+-activated fluoride red phosphors with short excited-state lifetimes (ESLs) is urgent and crucial for high-quality, wide-color-gamut display applications. However, it is still a great challenge to design target phosphors with both short ESL and high luminescence efficiency. Herein, we propose an efficient machine learning approach based on a small dataset to establish the ESL prediction model, thereby facilitating the discovery of new Mn4+-activated fluorides with short ESLs. Such a model can not only accurately predict the ESLs of Mn4+ in fluorides but also quantify the impact of structure features on ESLs, therefore elucidating the “structure-lifetime” correlations. Guided by the correlations, two new Mn4+-doped tetramethylammonium (TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7 ms) and high quantum efficiencies (internal QEs > 92%, external QEs > 55%) have been discovered successfully. A prototype displayer with excellent performance (∼124% National Television Standards Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight module, demonstrating its practical prospects in high-quality displays. This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference for accelerating the discovery of new promising phosphors

    Highly Efficient and Thermally Stable K<sub>3</sub>AlF<sub>6</sub>:Mn<sup>4+</sup> as a Red Phosphor for Ultra-High-Performance Warm White Light-Emitting Diodes

    No full text
    Following pioneering work, solution-processable Mn<sup>4+</sup>-activated fluoride pigments, such as A<sub>2</sub>BF<sub>6</sub> (A = Na, K, Rb, Cs; A<sub>2</sub> = Ba, Zn; B = Si, Ge, Ti, Zr, Sn), have attracted considerable attention as highly promising red phosphors for warm white light-emitting diodes (W-LEDs). To date, these fluoride pigments have been synthesized via traditional chemical routes with HF solution. However, in addition to the possible dangers of hypertoxic HF, the uncontrolled precipitation of fluorides and the extensive processing steps produce large morphological variations, resulting in a wide variation in the LED performance of the resulting devices, which hampers their prospects for practical applications. Here, we demonstrate a prototype W-LED with K<sub>3</sub>AlF<sub>6</sub>:Mn<sup>4+</sup> as the red light component via an efficient and water-processable cation-exchange green route. The prototype already shows an efficient luminous efficacy (LE) beyond 190 lm/W, along with an excellent color rendering index (Ra = 84) and a lower correlated color temperature (CCT = 3665 K). We find that the Mn<sup>4+</sup> ions at the distorted octahedral sites in K<sub>3</sub>AlF<sub>6</sub>:Mn<sup>4+</sup> can produce a high photoluminescence thermal and color stability, and higher quantum efficiency (QE) (internal QE (IQE) of 88% and external QE (EQE) of 50.6%.) that are in turn responsible for the realization of a high LE by the warm W-LEDs. Our findings indicate that the water-processed K<sub>3</sub>AlF<sub>6</sub> may be a highly suitable candidate for fabricating high-performance warm W-LEDs

    Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays

    No full text
    The discovery of high-efficiency Mn4+-activated fluoride red phosphors with short excited-state lifetimes (ESLs) is urgent and crucial for high-quality, wide-color-gamut display applications. However, it is still a great challenge to design target phosphors with both short ESL and high luminescence efficiency. Herein, we propose an efficient machine learning approach based on a small dataset to establish the ESL prediction model, thereby facilitating the discovery of new Mn4+-activated fluorides with short ESLs. Such a model can not only accurately predict the ESLs of Mn4+ in fluorides but also quantify the impact of structure features on ESLs, therefore elucidating the “structure-lifetime” correlations. Guided by the correlations, two new Mn4+-doped tetramethylammonium (TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7 ms) and high quantum efficiencies (internal QEs > 92%, external QEs > 55%) have been discovered successfully. A prototype displayer with excellent performance (∼124% National Television Standards Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight module, demonstrating its practical prospects in high-quality displays. This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference for accelerating the discovery of new promising phosphors

    Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays

    No full text
    The discovery of high-efficiency Mn4+-activated fluoride red phosphors with short excited-state lifetimes (ESLs) is urgent and crucial for high-quality, wide-color-gamut display applications. However, it is still a great challenge to design target phosphors with both short ESL and high luminescence efficiency. Herein, we propose an efficient machine learning approach based on a small dataset to establish the ESL prediction model, thereby facilitating the discovery of new Mn4+-activated fluorides with short ESLs. Such a model can not only accurately predict the ESLs of Mn4+ in fluorides but also quantify the impact of structure features on ESLs, therefore elucidating the “structure-lifetime” correlations. Guided by the correlations, two new Mn4+-doped tetramethylammonium (TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7 ms) and high quantum efficiencies (internal QEs > 92%, external QEs > 55%) have been discovered successfully. A prototype displayer with excellent performance (∼124% National Television Standards Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight module, demonstrating its practical prospects in high-quality displays. This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference for accelerating the discovery of new promising phosphors

    Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays

    No full text
    The discovery of high-efficiency Mn4+-activated fluoride red phosphors with short excited-state lifetimes (ESLs) is urgent and crucial for high-quality, wide-color-gamut display applications. However, it is still a great challenge to design target phosphors with both short ESL and high luminescence efficiency. Herein, we propose an efficient machine learning approach based on a small dataset to establish the ESL prediction model, thereby facilitating the discovery of new Mn4+-activated fluorides with short ESLs. Such a model can not only accurately predict the ESLs of Mn4+ in fluorides but also quantify the impact of structure features on ESLs, therefore elucidating the “structure-lifetime” correlations. Guided by the correlations, two new Mn4+-doped tetramethylammonium (TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7 ms) and high quantum efficiencies (internal QEs > 92%, external QEs > 55%) have been discovered successfully. A prototype displayer with excellent performance (∼124% National Television Standards Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight module, demonstrating its practical prospects in high-quality displays. This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference for accelerating the discovery of new promising phosphors

    Highly Efficient and Stable Narrow-Band Red Phosphor Cs<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> for High-Power Warm White LED Applications

    No full text
    Due to the unique narrow-band red emission and broadband blue light excitation, as well as milder synthesis conditions, Mn<sup>4+</sup> ion activated fluoride red phosphors show great promise for white light emitting diode (W-LED) applications. However, as the Mn<sup>4+</sup> emission belongs to a spin-forbidden transition (<sup>2</sup>E<sub>g</sub> → <sup>4</sup>A<sub>2</sub>), it is a fundamental challenge to synthesize these phosphors with a high external quantum efficiency (EQE) above 60%. Herein, a highly efficient and thermally stable red fluoride phosphor, Cs<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup>, with a high internal quantum efficiency (IQE) of 89% and ultrahigh EQE of 71% is demonstrated. Furthermore, nearly 95% of the room-temperature IQE and EQE are maintained at 150 °C. The static and dynamic spectral measurements, as well as density functional theory (DFT) calculations, show that the excellent performance of Cs<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> is due to the Mn<sup>4+</sup> ions being evenly distributed in the host lattice Cs<sub>2</sub>SiF<sub>6</sub>. By employing Cs<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> as a red light component, stable 10 W high-power warm W-LEDs with a luminous efficiency of ∼110 lm/W could be obtained. These findings indicate that red phosphor Cs<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> may be a highly suitable candidate for fabricating high-performance high-power warm white LEDs
    corecore