11 research outputs found

    Predicting the effects of sand erosion on collector surfaces in CSP plants

    Get PDF
    This paper presents a methodology to predict the optical performance and physical topography of the glass collector surfaces of any given CSP plant in the presence of sand and dust storms, providing that local climate conditions are known and representative sand and dust particles samples are available. Using existing meteorological data for a defined CSP plant in Egypt, plus sand and dust samples from two desert locations in Libya, we describe how to derive air speed, duration, and sand concentrations to use within the Global CSP Laboratory sand erosion simulation rig at Cranfield University. This then allows us to predict the optical performance of parabolic trough collector glass after an extended period by the use of accelerated ageing. However the behavior of particles in sandstorms is complex and has prompted a theoretical analysis of sand particle dynamics which is also described in this paper

    Worldwide prevalence, genotype distribution and management of hepatitis C

    Get PDF
    epatitis C virus (HCV) is one of the leading causes of chronic liver disease, cirrhosis, and hepatocellular carcinoma, resulting in major global public health concerns. The HCV infection is unevenly distributed worldwide, with variations in prevalence across and within countries. The studies on molecular epidemiology conducted in several countries provide an essential supplement for a comprehensive knowledge of HCV epidemiology, genotypes, and subtypes, along with providing information on the impact of current and earlier migratory flows. HCV is phylogenetically classified into 8 major genotypes and 57 subtypes. HCV genotype and subtype distribution differ according to geographic origin and transmission risk category. Unless people with HCV infection are detected and treated appropriately, the number of deaths due to the disease will continue to increase. In 2015, 1.75 million new viral infections were mostly due to unsafe healthcare procedures and drug use injections. In the same year, access to direct-acting antivirals was challenging and varied in developing and developed countries, affecting HCV cure rates based on their availability. The World Health Assembly, in 2016, approved a global strategy to achieve the elimination of the HCV public health threat by 2030 (by reducing new infections by 90% and deaths by 65%). Globally, countries are implementing policies and measures to eliminate HCV risk based on their distribution of genotypes and prevalence

    Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells

    No full text
    Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents
    corecore