18 research outputs found

    Sistem Kontrol Kekeruhan dan Temperatur Air Laut Menggunakan Microcontroller Arduino Mega

    Full text link
    Sistem kontrol merupakan bagian yang tidak dapat dipisahkan dalam kehidupan sehari-hari.. Saat ini penerapan sistem kontrol telah menjamah bidang perkebunan, perikanan ataupun pertanian. Dalam penelitian ini, sistem kontrol akan diterapkan pada proses budidaya perikanan seperti budidaya ikan kerapu. Dimana ikan kerapu memiliki habitat dengan kondisi air laut dengan kadar garam 30 - 33 ppt, kadar oksigen ± 4 ppm, temperatur air laut 240 - 310C dan kadar keasaman (pH) air laut 7,6 - 7,8. Kecepatan arus air ideal sekitar 20 hingga 40 cm/detik dimana diperlukan untuk pergantian air dan oksigen serta untuk mengalirkan sisa metabolisme ikan serta pakan ikan keluar. Kondisi habitat ikan ini harus dpat dikontrol dengan baik. Di beberapa tempat budidaya ikan kerapu sistem penjagaan kondisi habitat ini dilakukan secara manual. Dengan adanya sistem kontrol, kondisi habitat ini akan sangat mudah dijaga. Dimana dalam penelitian ini difokuskan pada kemampuan sistem kontrol kekeruhan dan temperatur air laut meliputi fungsi sensor, waktu kerja pengontrol dan kinerja peralatan kontrol. Perangkat pengontrol menggunakan microcontroller Arduino Mega dengan beberapa sensor temperatur dan kekeruhan. Sensor temperatur menggunakan tipe DS18S20 dan untuk kontrol kekeruhan menggunakan sensor turbidity. Dari hasil pengujian didapatkan bahwa sistem kontrol ini dapat mengatur dan menjaga kadar kekeruhan dan temperatur air laut dengan arus 0.215 A untuk satu relay dan 0.33 A untuk 3 relay. Untuk kekeruhan dibutuhkan waktu yang dibutuhkan untuk kontrol aktif yaitu 15 detik dengan indikator kekeruhan dari pakan ikan sebanyak 50 gram dan 10 liter air. Untuk kapasitas yang lain 15 liter air didapatkan waktu kontrol aktif pada 40 detik dengan jumlah pakan 50 gram. Hal ini menunjukkan kontrol kekeruhan bekerja dengan baik dengan semakin keruh air laut semakin cepat bekerja sistem kontrol menggantikan air laut untuk tetap menjaga habitatnya. Waktu yang dibutuhkan untuk menurukan temperatur 1.270C adalah 6 menit 37 detik dengan kapasitas 10 lite

    Cacalia indet.

    No full text
    The filamentous fungus <i>Magnaporthe oryzae</i> (<i>M. oryzae</i>) is the causative agent of rice blast disease and presents a significant threat to worldwide rice production. To establish the groundwork for future research on the pathogenic development of <i>M. oryzae</i>, a global proteomic study of conidia was performed. The filter aided sample preparation method (FASP) and anion StageTip fractionation combined with long, optimized shallow 210 min nanoLC gradients prior to mass spectrometry analysis on an Orbitrap XL was applied, which resulted in a doubling of protein identifications in comparison to our previous GeLC analysis. Herein, we report the identification of 2912 conidial proteins at a 1% protein false discovery rate (FDR) and we present the most extensive study performed on <i>M. oryzae</i> conidia to date. A similar distribution between identified proteins and the predicted proteome was observed when subcellular localization analysis was performed, suggesting the detected proteins build a representative portion of the predicted proteome. A higher percentage of cytoplasmic proteins (associated with translation, energy, and metabolism) were observed in the conidial proteome relative to the whole predicted proteome. Conversely, nuclear and extracellular proteins were less well represented in the conidial proteome. Further analysis by gene ontology revealed biological insights into identified proteins important for central metabolic processes and the physiology of conidia

    In-Depth Analysis of the <i>Magnaporthe oryzae</i> Conidial Proteome

    No full text
    The filamentous fungus <i>Magnaporthe oryzae</i> (<i>M. oryzae</i>) is the causative agent of rice blast disease and presents a significant threat to worldwide rice production. To establish the groundwork for future research on the pathogenic development of <i>M. oryzae</i>, a global proteomic study of conidia was performed. The filter aided sample preparation method (FASP) and anion StageTip fractionation combined with long, optimized shallow 210 min nanoLC gradients prior to mass spectrometry analysis on an Orbitrap XL was applied, which resulted in a doubling of protein identifications in comparison to our previous GeLC analysis. Herein, we report the identification of 2912 conidial proteins at a 1% protein false discovery rate (FDR) and we present the most extensive study performed on <i>M. oryzae</i> conidia to date. A similar distribution between identified proteins and the predicted proteome was observed when subcellular localization analysis was performed, suggesting the detected proteins build a representative portion of the predicted proteome. A higher percentage of cytoplasmic proteins (associated with translation, energy, and metabolism) were observed in the conidial proteome relative to the whole predicted proteome. Conversely, nuclear and extracellular proteins were less well represented in the conidial proteome. Further analysis by gene ontology revealed biological insights into identified proteins important for central metabolic processes and the physiology of conidia

    In-Depth Analysis of the <i>Magnaporthe oryzae</i> Conidial Proteome

    No full text
    The filamentous fungus <i>Magnaporthe oryzae</i> (<i>M. oryzae</i>) is the causative agent of rice blast disease and presents a significant threat to worldwide rice production. To establish the groundwork for future research on the pathogenic development of <i>M. oryzae</i>, a global proteomic study of conidia was performed. The filter aided sample preparation method (FASP) and anion StageTip fractionation combined with long, optimized shallow 210 min nanoLC gradients prior to mass spectrometry analysis on an Orbitrap XL was applied, which resulted in a doubling of protein identifications in comparison to our previous GeLC analysis. Herein, we report the identification of 2912 conidial proteins at a 1% protein false discovery rate (FDR) and we present the most extensive study performed on <i>M. oryzae</i> conidia to date. A similar distribution between identified proteins and the predicted proteome was observed when subcellular localization analysis was performed, suggesting the detected proteins build a representative portion of the predicted proteome. A higher percentage of cytoplasmic proteins (associated with translation, energy, and metabolism) were observed in the conidial proteome relative to the whole predicted proteome. Conversely, nuclear and extracellular proteins were less well represented in the conidial proteome. Further analysis by gene ontology revealed biological insights into identified proteins important for central metabolic processes and the physiology of conidia

    Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during <i>Magnaporthe oryzae</i> Appressorium Development

    No full text
    The rice pathogen, <i>Magnaporthe oryzae</i>, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the <i>M. oryzae</i> phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development

    Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during <i>Magnaporthe oryzae</i> Appressorium Development

    No full text
    The rice pathogen, <i>Magnaporthe oryzae</i>, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the <i>M. oryzae</i> phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development

    Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during <i>Magnaporthe oryzae</i> Appressorium Development

    Get PDF
    The rice pathogen, <i>Magnaporthe oryzae</i>, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the <i>M. oryzae</i> phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development

    MGG_01282 is required for appressorium formation and pathogenicity in rice and barley.

    No full text
    <p>A. Germination and appressorium formation of conidia from 70-15 wild type (WT), MGG_01282 deletion mutants (MT1, MT2) and ectopic (EC) strains on a hydrophobic surface after 24 hr incubation. B. Percentage of conidia germination and appressorium formation from at least 100 conidia per replicate with 3 replicates per strain. C. Disease development of each strain including a complemented (CP) strain inoculated onto barley (upper panel) and rice (lower panel) seedlings. Disease progress was evaluated compared to water treated control (C) 5 days after inoculation. D. Wound assay on detached barley leaves. Barley leaves were wounded by making a tiny pinprick with a sterile needle. Leaves were inoculated with 8 day old V8 agar block of each strain and incubated in a humid chamber. Disease progress was evaluated compared to control agar and photographed 5 days post-inoculation.</p

    MGG_01282 is required for normal conidia production.

    No full text
    <p>70–15 wild type (WT), MGG_01282 deletion mutants (MT1, MT2), ectopic (EC) and MGG_01282 complemented (CP) strains were incubated on V8 medium (A, B) and the average number of conidia produced 10 days after inoculation (C).</p

    Protein ubiquitination is induced by nitrogen starvation and requires the polyubiquitin gene, MGG_01282.

    No full text
    <p>A. 70-15 <i>M. oryzae</i> was grown in liquid minimal medium with (+N) and without (−N) nitrogen sources. Protein extracts from each sample were probed with an antibody recognizing both ubiquitin and polyubiquitin (P4D1). An anti-actin antibody was used to compare the relative amount of total proteins in each lane. B and C. Wild type (WT), MGG_1282 deletion mutants (MT1, MT2) and ectopic (EC) strains were incubated in minimal medium. Protein extracts from each sample were probed with antibodies recognizing ubiquitin and polyubiquitin (P4D1) or specifically polyubiquitin (K63), respectively. Panel B were exposed to X ray film for a longer compared to panel A.</p
    corecore